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Chapter 1
Introduction

1.1 Econometrics versusmachine learning

Econometrics and machine learning (ML) share many statistical tools, as we will
see in Chapter 2. However, the philosophies and goals of these two approaches often
differ in subtle ways. To draw the contours of the two fields and give the reader an
idea of the questions that animate them, we will first exaggerate their differences.
We remind the reader that the reality is much more nuanced: the purpose of this
textbook is to see how we can harness the forces of one to achieve the goals of the
other.

The first point of divergence lies in the purpose of the two approaches. Econo-
metrics, first and foremost, aims to quantify a precisely defined effect. For instance:
what is the impact of a minimum wage increase on employment? Are there peer
effects among groups of students?What is the averagewage gap betweenwomen and
men? In this sense, the econometrician focuses on one or a fewparameters of interest
aimed at summarizing the effect they seek tomeasure.We are particularly interested
in statistical inference, i.e., building confidence intervals and testing hypotheses.
More specifically, over the last three decades, empirical economics has focused on
measuring causal effects, not just correlations (Angrist and Pischke, 2010), an effort
crowned by the Nobel Prize awarded to Joshua Angrist, Guido Imbens, and David
Card in 2021, as well as the one awarded to Esther Duflo two years earlier. This
paradigm is studied in Chapter 3. The crux of most economics articles is to demon-
strate the rigor of their identification strategy, i.e., to prove that the measured effect
is due only to the highlighted causal variable, excluding other parasitic phenom-
ena. Hence, the interest in laboratory, field, or natural experiments, or the search
for exogenous variation in a particular policy, i.e., generated by a cause independent
of the phenomenon of interest.

On the other hand, the goal of ML is to build a model that allows one to obtain
the best possible predictive performance for a given problem, often by respecting
a computational constraint when calling the model, also called runtime or infer-
ence time performance. Thus, the model must generate predictions within a defined
timeframe. ML researchers often talk about algorithms rather thanmodels, to stress
that this process is based on a series of instructions that lead to a prediction, regard-
less of their nature, rather than on a single statistical model. ML is therefore used
to respond to different problems than those of econometrics, such as constructing
song or movie recommendation systems, matching job-seekers to firms, translating

Machine Learning for Econometrics. Christophe Gaillac and Jérémy L’Hour,
© Christophe Gaillac and Jérémy L’Hour (2025). DOI:



2 Machine Learning for Econometrics

documents, predicting the next data point in a time series, categorizing products,
recognizing patterns in images, retrieving documents based on their content, etc.
The term artificial intelligence (AI) is often used as a synonym formachine learning.
This term underlines that a machine replaces the human in performing a cognitive
task and that its implementation can be carried out on a very large scale at a very
small marginal cost – the main fixed costs consisting of training the algorithm and
then making it available. As an aside, these costs are far from negligible, so much so
that training large languagemodels (LLMs) like the one that powers ChatGPT from
scratch can run to well over a few million dollars.

Machine learning is an area inwhich computer science is ubiquitous, and compar-
ingML algorithms with traditional algorithms can help to understand the paradigm
differences. Traditional algorithms consist of fixed rules, established a priori by
a human, that the machine simply executes; whereas training an ML algorithm
consists of using datasets that correctly associate inputs with outputs to teach the
computer the implicit rules underlying these associations, regardless of the exact
nature of these rules, as long as they produce relevant responses for the (human)
end-user. In the case of analyzing text data, this is the difference between using a
regular expression (Chapter 12) and a modern language model (Chapter 14).

It is noteworthy that machine learning, and deep learning in particular, have
achieved their most impressive successes in well-defined tasks characterized by a
favorable signal-to-noise ratio. Such tasks are those that most humans are capa-
ble of performing: recognizing an object in an image, finding the synonym of a
word, recommending amovie that a friend will enjoy, etc. However, twomain road-
blocks hinder their automation on a large scale: on the one hand, they are greedy
in cognitive resources, and on the other hand, they are challenging to reformulate
as standard predictive tasks due to the unstructured nature of the input data. The
lack of structure in the input data makes it challenging to create features (explana-
tory variables) or to integrate them into conventional statistical frameworks because
they do not neatly fit into a table, as opposed to tabular data social scientists are used
to tackling. This is the case for images, for example, which are characterized by inte-
ger tensors representing pixels, but each pixel taken separately does not contain any
information. Text is another case of unstructured data which can be represented as
a sequence of integers that are uniquely mapped to tokens (pieces of words), which
cannot be easily represented in a table because documents vary in length and word
occurrences do not follow an auto-regressive process. Therefore, the capability to
scale a task achievable by humans and to incorporate unstructured and highly com-
plex data into a mathematical model fuels the current enthusiasm around ML. Its
performance on tasks difficult to performby a human being, because theymight suf-
fer from too high a level of noise or flagrant non-stationarities such as the prediction
of macroeconomic series or stock prices, is yet to be demonstrated.

To nuance this first difference between the two fields, we recall that forecasting is a
well-known econometric subfield whose similarities withmachine learning are very
easy to see (Chapter 11). Nevertheless, econometric forecasting, because it often
deals with complex phenomena, imposes a heavier
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constrainedmodel. The goal is to counteract an unfavorable signal-to-noise ratio by
injecting theoretical priors into models.

These differences in objectives usually lead to a second point of divergence: the
approach to building models. The gist of econometrics is to summarize the infor-
mation contained in the data to measure a precise quantity. One is concerned
only with a particular causal relationship, and not with fully predicting a phe-
nomenon (Chapter 3). Econometric models are therefore preferably simpler, with
an emphasis on linearity, and their structure is usually motivated by a theory of the
underlying causal relationship or of individual behavior. They are often based on
certain assumptions that are not falsifiable, or difficult to verify using statistical tests.
A significant example is the exogeneity condition when employing an instrumental
variable technique (Section 3.4).

InML, if we were to paint with a broad brush, prediction performance is the only
criterion for selecting a model. Therefore, there is less reluctance to use a black-box
approach provided it is effective (e.g., using deep neural networks, Section 2.8). A
standard set of metrics is traditionally used to evaluate the performance of a model,
and since they are part of the ML background, we must introduce them now. Let’s
take a binary classification problem where one wants to predict a random variable
Y ∈ {0, 1} (also called a label). For example: will a customer purchase my product
(or click on the link)? Will the price of this asset go up or down next week? Is this
product review positive or negative? Notice that this is a supervised learning task
i.e., one where the ground truth is observed in the data, as opposed to an unsu-
pervised learning task for which the “correct answer” is not known with certainty.
Suppose we have an algorithm giving a prediction Ŷ for a given input. For a given
data point, if Ŷ = 1 it is said to be “positive,” and if Ŷ = 0 it is said to be “negative.”
Algorithm performance is evaluated by calculating various metrics. The first is the
accuracy:

P (Ŷ = Y) ,

which estimates the probability that a prediction is correct. Notice that if a problem
is highly imbalanced (one label is much more present than the other in the data),
achieving a high accuracy is trivial: it suffices to always predict the most frequent
label. That is not to say that ML algorithms are useless in this case, but more so that
it is important to establish a baseline level of success. The second is the precision:

P(Y = y|Ŷ = y), for y ∈ {0, 1}.

This quantity measures the proportion of elements correctly labeled by the algo-
rithm among all elements labeled as such. It answers the question: “if the algorithm
declares an element to be y, what is the probability that it is correct?” The third is
the recall:

P(Ŷ = y|Y = y), for y ∈



4 Machine Learning for Econometrics

The recall estimates the proportion of properly labeled items among all elements
actually in the category in question in the population. It answers the question: “if an
element belongs to category y, what is the probability that the algorithm will detect
it?” The F1 score is a synthesis of these two frequently used metrics. Its formula
is 2 × precision × recall /(precision + recall). The receiver operating characteristic
(ROC) curve, an example of which is shown in Figure 1.1, is another way tomeasure
the performance of amodel when it outputs a continuous score instead of simply the
predicted label. This curve indicates the trade-off that a model can achieve between
false positive and true positive rates (i.e., the recall), the idea being that achieving a
higher true positive rate requires classifying more elements as positive, at the risk of
being wrong and thus leading to a higher false positive rate. The degree of variation
in this false positive rate – i.e., the slope of the ROC curve – measures the marginal
“price to pay” to improve the true positive rate. If the classifier is as good as random
(but not better), this curvature has a slope of 1: each percentage point gained on
the recall results in an equivalent increase in the false positive rate. Conversely, the
higher the slope, the lower the rate of false positives reacts to an increase in recall,
signaling that the model offers a favorable trade-off. The precise measure of this
trade-off is given by the area under the curve (AUC), the surface under the ROC
curve, which is therefore between 0 and 1.

The use case will determine the choice of the metric to optimize when selecting
themodel. For example, if the goal is to design a tool to detect tax fraud, an algorithm
that offers high precisionwill be preferred, because the resources to carry out checks
are limited and one would like to find an actual case of fraud when human resources

1.0
Logit classifier (AUC = 0.78)
Random (AUC = 0.5)
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Figure 1.1 Example of a ROC curve that measures the trade-off between the true positive and
the false positive rates.
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are deployed. On the other hand, if the aim is to build an assistant for detecting
cancer in patients, a model with high recall will be preferred because a false positive
can always be eliminated by subsequent medical judgment.

Finally, data plays a different role in the two fields. In econometrics, a model is
generally limited to one dataset, for the sole purpose of conducting a study or writ-
ing an article. The model is not intended to be used on another dataset. At best, a
similar study will be carried out on similar data, but with amodel whose parameters
will be different: the econometrician is interested in summarizing the information
contained in the data via a parameter of specific interest. Different datasets, there-
fore, will yield different parameter estimates. The theoretical guarantees of being
able to optimally extract information from a finite number of data points is therefore
of primary importance for an econometrician.

As far as machine learning is concerned, models are developed to be deployed
in production, i.e., used repeatedly, as soon as new data is collected. It is therefore
of primary importance to ensure that the algorithm does not suffer from overfit-
ting, i.e., misleadingly high performance on the data on which the parameters were
optimized, without resulting in a similar performance on a newly collected dataset.
This usually means that the predictor has a small bias, but a great variance, because
it interpolates between the in-sample data points. It should be noted that the model
may also suffer from underfitting if its bias is too large and its variance is too small:
this problem can be solved by adopting amore complexmodel. To limit these biases,
it is important to separate between a training dataset and a test dataset: the former
is used to optimize the value of the parameters or to select a model, and the lat-
ter to evaluate the performance of the model. The test dataset allows to compute
an unbiased estimate of the production performance of the model (Chapter 7 in
Hastie et al., 2009). The goal is to obtain a model that does not suffer from too large
a generalization error. In recent years, the adoption of neural networks contain-
ing north of hundreds of millions of parameters has challenged the relevance of the
standard bias-variance trade-off that assumes the existence of a “Goldilocks” model
(i.e., neither too simple nor too complex), replacing it with models that aggres-
sively interpolate training data but show impressive out-of-sample performance, a
phenomenon known as the “double descent” (Belkin et al., 2019).

In addition, in the case of data whose distribution may change over time (e.g., as
in the case of time series), it is important not to use future information when train-
ing the algorithm, i.e., not to use the information available from a date t to predict a
variable observed at the date t – 1. This ensures that the training process follows a
methodology known as “point in time”, where only the information available in the
present is used to predict the future. For example, when building an automatic trad-
ing strategy, it is important to use only information that is available when deciding
the position to take in a particular asset, otherwise, the strategy will not be usable in
practice.

Before we close this section, let us add a few nuances. First, one can demand that
ML algorithms be more than black boxes that return a prediction like a magician
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pulling a rabbit out of a hat. In recent years, several scandals involving the use of
algorithms have highlighted the need to be able to explain their predictions (so
called explainability), to study and correct their biases (see the fairness and bias
mitigation literature), and to be more cautious when their use directly affects the
fate of citizens. A seminal example is the criticism of the COMPAS algorithm in
the US, which was used to predict whether criminals would reoffend, and which
assigned higher “risk” scores to African Americans who did not reoffend than to
white defendants who did not, raising important fairness questions. We can also
mention the various scandals and the recurrent suspicions about the impact of social
networks in the dissemination of false information and the manipulation of public
opinion, the use of certain algorithms for unspeakable purposes such as detecting
the sexual orientation of individuals from a photo, gender biases that affect language
models (making “homemaker” the feminine equivalent of “computer programmer”;
Sun et al., 2019), etc.

On the other hand, “p-hacking” (i.e., the practice of embarking on a specification
search to obtain significant results), or more generally the replicability crisis in sci-
entific studies, which also affects empirical economics, can be seen as a problem of
overfitting. Several solutions have been considered, such as the introduction of a
pre-analysis plan to constraint the parameter space that the researcher is allowed to
investigate (Olken, 2015). However, separating the data into an estimation sample
and a validation sample, as in machine learning, seems to be an interesting solution
(e.g., Wu and Gagnon-Bartsch, 2018; Chernozhukov et al., 2017).

1.2 What is this bookabout?

The core chapters of this book are divided into four main parts. Chapters 2 and 3
introduce the base statistical and causal inference tools that the core chapters rely
upon. Chapter 15 provides a set of problems to test your knowledge.

1.2.1 High dimension and variable selection

Empirical economics involves crucial choices, such as the functional form of the
equation to be estimated (e.g., linear or quadratic, the distribution of error terms,
the number and identity of control variables, or the choice of instruments). These
choices give way to arbitrariness and, more dangerously, to making these choices
to get results that match the researcher’s prior beliefs about them, which is a
form of “p-hacking.” In any case, without safeguards, these choices may cast doubt
on the credibility of the results. The increasing availability of large datasets and
advances in machine learning have both made this problem even more acute –
there are now more factors one can control for and traditional methods are not
working in this context – while providing potential solutions. In Part II, we focus
on high-dimensional methods, which can handle a large number of covariates
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and instrumental variables, and on certain machine learning techniques with the
purpose of performing causal inference in mind.

Let us now briefly describe the problems we will address: the focus is primarily on
policy evaluation and causal inference, although these tools applymore broadly. The
tools presented in this part must be selected according to the parameter of interest.
They can be defined using the potential outcomemodel of Rubin (1974). Yi(0) is the
potential outcome for individual i if not treated and Yi(1) is the potential outcome if
treated. We only observe the state of treatmentDi ∈ {0, 1} and the realized outcome
Yi defined by:

Yi = Yi(Di) = { Yi(0) if Di = 0,
Yi(1) if Di = 1.

One interesting quantity is the average treatment effect τ0 := E[Yi(1) – Yi(0)],
representing the average impact of the intervention on the study population. If treat-
ment assignment is random when conditioning on observables (i.e., assuming that
E[εi|Di,Xi] = 0 in the model below) and there are only a limited number of sig-
nificant covariates (sparsity), Chapter 4 provides the tools to estimate τ0 in the
model:

Yi = Diτ0 + X ′
iβ0 + εi, with E[εi] = 0 and E[εi|Di,Xi] = 0,

where Xi is a vector of p exogenous control variables, p being potentially larger than
the number of observations. The large dimension of Xi, combined with the assump-
tion of sparsity, opens the door to the use of selection methods such as the Lasso,
which this chapter examines in detail. Chapter 5 extends the insights of the previ-
ous chapter, presents a more general framework, and introduces sample-splitting,
a crucial device when using non-standard tools such as estimators resulting from
machine learning procedures.

Chapter 6 then explains how to adapt these tools when the exogeneity assump-
tion possibly no longer holds, i.e., it is assumed that E[εi|Di,Xi] ≠ 0, but there exist
a (possibly large) number of instrumental variables Zi, all satisfying the exogene-
ity assumption E[εi|Zi] = 0. We introduce tools to a priori select the ones that are
providing the more precise inference. We show that this problem can be reformu-
lated using tools from the previous chapters. To go further, Chapter 7 develops the
theoretical refinements of the tools presented so far, with the aim of using weaker
assumptions. It deals specifically with non-Gaussian errors, sample-splitting, con-
fidence regions for a group of coefficients based on a correction of the Lasso, and
panel data.

1.2.2 Estimation of heterogeneous effects

The average treatment effect (τ0 above) does not describe the heterogeneity of
responses to an intervention – some people may benefit greatly from it, while others
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may not be affected or may even be worse off. Chapter 8 is therefore concerned with
a more complex parameter of interest, which is the average treatment effect condi-
tional on certain (observed) variables τ : x↦ E[Yi(1)–Yi(0)|Xi = x]. Causal random
forests are tools adapted from machine learning particularly suited for inference on
the function τ(·), i.e., to test the significance of the effect conditional on covariates
taking the value x. However, the theory requires strong assumptions to obtain such
tests. The end of the Chapter 8 lowers our requirements to make inference only
on certain characteristics of the conditional average treatment effect, while ensuring
better theoretical guarantees. This makes it possible to use ML methods with few
assumptions to test for the heterogeneity of the treatment or to obtain information
about its form.

Chapter 9 presents the tools for estimating optimal policies in the context of ran-
domized experiments. The optimal policy obtained directly from using the tools for
estimating the heterogeneity in Chapter 8 leads to policies that may be complex or
impossible to implement in practice. The methods presented in Chapter 9 there-
fore allow the optimal policy to be estimated under the constraint that it has limited
complexity.

1.2.3 Aggregate data andmacroeconomic forecasting

Part IV deals specifically with data that has a temporal structure, often taking amore
aggregated form in economics.

In particular, Chapter 10 presents the synthetic control method, an intrinsically
high-dimensional method particularly useful for policy evaluation with aggregated
data, when micro-data are not available or not relevant to answer the question. It
also introduces permutation inference. The synthetic control method offers a data-
driven procedure for selecting a comparison unit, called the “synthetic unit” in
comparative case studies. The synthetic unit is constructed as a weighted combi-
nation of control units, also known as the “donor pool.” It aims to best replicate the
behavior of the treated unit during the pre-treatment period.

Chapter 11 presents high-dimensional estimationmethods in a context where the
data is not identically distributed and potentially has heavy tails, as is the case with
macroeconomic and financial data. The aim of the chapter is to show how to adapt
the tools developed in the previous chapters to that of predicting macroeconomic
variables, in the context where one wishes to select without prior from a large num-
ber of explanatory variables. The limitations of sparse methods in this context are
also underlined and links to factor models, which are “dense” models, are made. We
give an example of real-time GDP prediction using “traditional” data as well as text
data, which are also available in real time and can thus provide useful information
for prediction.
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1.2.4 Text data

Finally, Part V deals with the analysis of text data, which are unstructured data
sources that can play a key role in empirical economics. However, the use of such
data in a statistical model is not straightforward: unlike tabular data (i.e., data from
surveys or administrative registers that comes in a table form), textual documents are
not calibrated to fit properly into binary or continuous representations, as required
for the application of traditional statistical methods.

A key step is therefore to extract a numerical representation of texts, as well as
to model the language. Chapter 12 contains a simple introduction to the numerical
representation of documents for latter use in standard statistical models: it involves
transforming text data into tabular data, and then applying conventional methods
such as linear regression. A detour will bemade through languagemodeling, includ-
ing the unigram model, which forms the basis for a number of simple but useful
language models. This chapter will also present several applications that address
economic or social topics such as the impact of racism on elections or the definition
of markets for goods and services.

Chapter 13 introduces one of the fundamental concepts of modern natural lan-
guage processing (NLP): word embeddings. We will see that these sophisticated
vector representations of words allow to transcribe relationships reflecting the struc-
ture of the language. The progressive complexification of the type of embeddings
used is the guiding thread of the chapter: from a rudimentary binary representa-
tion to a much smaller distributed representation, leading to representations from
ad hoc models such as the famous word2vec. Then, we will see generalizations
of the concept of embeddings beyond textual data, still experimental in empirical
economics, but identified as promising for the future.

Finally, Chapter 14 is an in-depth presentation of modern language models
that use the transformer architecture that gained traction around 2017. Unlike the
first parts of this book, the approach is resolutely closer to pure machine learn-
ing methods than to the current practice of empirical economics. The idea is to
equip the economist with these powerful models, from the training of tokeniz-
ers, to the transformer architecture using BERT as an example and the different
strategies that are used to train these models. The chapter concludes by illus-
trating the application of these models in building embeddings through Siamese
networks.

To help the reader navigate this textbook, Figure 1.2 provides the link between
each chapter designated by its number. An edge from one circle to another indicates
that the parent chapter is a prerequisite for understanding the child chapter. In addi-
tion to Chapters 2 and 3, which are not part of the core of the material, the reader
may start with Chapters 4, 8, 12 which are the first chapters of Parts II, III and V
respectively, or with one of the two chapters of Part IV.
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Figure 1.2 Graph depicting the relationships between each chapter.

1.3 Framework andnotations

In this book we use boxes according to the following code:

Remark 1.1 A remark

Remarks highlighting some key points are specified in numbered boxes “remark.”

Additional references

Additional readings and essential references are given in a box “additional readings.”

Codeanddata

Links to open source shared code repositories are given in the “code and data” boxes.
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Key concepts

At the end of the chapter, the list of key words and concepts appears in a box “key concepts.”

Questions

At the endof the chapter, questions to test your knowledge canbe found in abox “questions.”

Unless otherwise specified, n is the sample size and p is the number of variables. As
far as possible, the index variable i is used to denote an observation i ∈ {1, . . . , n};
the index variable j is used to denote an explanatory variable j ∈ {1, . . . , p}; the
variable t is used to denote an observation in a sequence (i.e., it indexes a set of
observations on which there is an order, usually temporal). In general, in the main
text, the individual index iwill be omitted e.g., Yi,Di,Xi in favor of the simplification
Y,D,X where this does not lead to confusion.

For a random variable X, the symbol X ~ means that it follows the distribution. P(A) is the probability of occurrence of event A. E[X] refers to the expectation of
the random variable X, and Var(X) refers to its variance. φ, Φ, and Φ–1 refer respec-
tively to the density function, cumulative distribution function (cdf ), and quantile
function of the standard Gaussian distribution. Xn

p⟶ X refers to the convergence
in probability of the random variable Xn to the random variable X when n → ∞,
while Xn

d⟶  refers to the convergence of the distribution of the variable Xn to
the distribution .

The parameter that is being estimated usually subscripted by 0 and an estimator
of this quantity is superscripted with a hat, thus e.g., θ0 and θ̂.

The notation a ≲ b means that a ≤ cb for a certain constant c > 0 that does not
depend on sample size n.

For x ∈ Rp, the norms ‖x‖0 := Card {1 ≤ j ≤ p, xj ≠ 0}, ‖x‖1 := ∑p
j=1 |xj|, ‖x‖2 :=

√∑p
j=1 x2j , ‖x‖∞ := max

j=1, . . . , p
|xj| are defined. For a matrixM,M′ means its transpose.

Ip means the identity matrix of dimension p. A vector is considered to be a matrix
with a second dimension equal to 1. The m-sparse norm of the (square) matrix M
is defined as follows:

‖M‖sp(m) := sup
‖x‖0≤m
‖x‖2>0

√x′Mx
‖x‖2

.

The scalar product between two x and y vectors of dimension p is denoted by
x · y = x′y = ∑p

j=1 xjyj. ⊙ means element-wise multiplication. For example,
x⊙ y = (xjyj)j=1, . . . , p. Abbreviations used include: CLT = Central Limit Theorem,
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LLN = Law of Large Numbers, CMT = Continuous Mapping Theorem, OLS =
Ordinary Least Squares, iid = independent and identically distributed, a.s. = almost
surely.

1.4 Additional resources

This book has been designed to be self-contained. However, it is useful to mention
related bibliographic resources, which allow to deepen the concepts or to consoli-
date fundamentals, and which form the basics for this textbook. Indeed, this book
is the result of a second-year master’s course titled first “High-dimensional Econo-
metrics” and then “Machine Learning for Econometrics”, taught at ENSAE Paris as
well as at Institut Polytechnique de Paris. It was therefore designed for an audience
already familiar with the statistical models and intuitions that are second nature
to empirical economists. Although we have written this book with the objective of
reducing the cost of adopting these techniques, we are not immune to the use of
shortcuts that obscure the understanding. Gaillac and L’Hour (2023) is the French
version of this book.

Additional references

The most commonly used econometric tools in this book are developed in two of the ref-
erence textbooks: Wooldridge (2002) and Hansen (2022). With regard to causal inference,
we can cite the standard references of Angrist and Pischke (2009) and Imbens and Rubin
(2015), and the more recent Chernozhukov et al. (2024), focusing on the use of ML meth-
ods. A competing causal frameworkof Rubin (1974), knownasDirectedAcyclic Graphs (DAG),
is developed in Pearl (2000). In addition to the reminders and references given in Chapter
2, Hastie et al. (2009) is a reference for machine learning methods, while Goodfellow et al.
(2016) covers neural networks. More generally, the online course “Full-stack Deep Learn-
ing” (fullstackdeeplearning.com) is a comprehensive and highly applied reference for the
implementation of systems using machine learning algorithms.

Codeanddata

AGitHub repository is available at the address github.com/jeremylhour/ml4econometrics. It
contains scripts in R and Python, which reproduce some of the applications of this work, as
well as elements to answer the questions and exercises presented in Part VI.

http://fullstackdeeplearning.com
http://github.com/jeremylhour/ml4econometrics


PART I

STATISTICS AND ECONOMETRICS
PREREQUISITES





Chapter 2
Statistical tools

This chapter is a refresher on a number of statistical tools and techniques that will be
used throughout this book. The aim is to give a short overview of thesemethods, but
not to provide the keys for a complete mastery. At the end of each section, further
references are suggested.

2.1 Linear regression

The linear regression model is the bread and butter of the empirical economist. Let
us begin with a refresher on its definition, as well as some properties and examples
of its use. Assume we observe a sample of independent and identically distributed
random variables (Yi,Xi)i=1, . . . ,n of size n. Yi is a scalar. It is the dependent variable,
the one we are trying to model. Xi is a vector of dimension p. This is the vector of the
explanatory variables, the ones that will be used to explain the dependent variable.
That is, we have:

Xi =
⎛
⎜
⎜
⎝

Xi1
Xi2
⋮
Xip

⎞
⎟
⎟
⎠

,

where possibly Xi1 = 1 is the intercept. We assume here that p < n: we have
more observations than explanatory variables, meaning that we are in a small-
dimensional case. This assumption will be relaxed in the next section. The linear
model is written as:

Yi = Xi′β0 + εi = Xi1β01 + . . . + Xipβ0p + εi,

where Xi′ is the transpose of Xi, β0 is the parameter vector of dimension p, and εi is
an error term, which is a random variable that includes the terms that influence Yi
but are not observed. Since the sample is comprised of independent and identically
distributed (i.i.d.) random variables at the unit observation level i (individual or
“cluster” in the panel data setup), the index i is frequently omitted to streamline
notation: Y = X′β0 + ε. This model assumes that the dependent variable is the sum
of a linear combination of the explanatory variables and an unobserved error term.
The latter is subject to specific assumptions that are necessary to study the properties
of the estimator for β0 that we will compute.

Machine Learning for Econometrics. Christophe Gaillac and Jérémy L’Hour,
© Christophe Gaillac and Jérémy L’Hour (2025). DOI:
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At this stage, it is important to distinguish between two concepts: the model and
the data-generating process (DGP). The model is the set of assumptions, i.e., the
intellectual structure imposed on the data in order to extract meaning from it. By
definition, a model is a necessary restriction of reality in order to extract informa-
tion from it. The data-generating process refers to the process or law that governs
the formation of the measured variables – it is unknown by definition, except in the
case of computer simulations. It is somewhat the “true” model. Therefore, a linear
model can be estimated even if the underlying probabilistic process that generated
the sample (Yi,Xi)i=1, . . . ,n is not linear – the relevance of the abstraction that the lin-
earmodel represents can then be evaluated theoretically under various assumptions
affecting the DGP.

The ordinary least squares (OLS) estimator solves:

β̂ = argmin
β∈Rp

1
n

n
∑
i=1
(Yi – Xi′β)2, (2.1)

which is the sample analog of the best linear prediction (BLP) problem:

argmin
β∈Rp

E [(Yi – Xi′β)2]. (2.2)

The program (2.1) is strictly convex if and only if the matrix ∑n
i=1 XiXi′ is non-

singular. Then, β̂ is the value that satisfies the first order conditions, i.e., that makes
the gradient of the objective function equal to zero:

– 2
n

n
∑
i=1

Xi (Yi – Xi′β̂) = 0. (2.3)

It is a system of p dimension equations that is also referred to as “normal equations.”
It has a simple analytical solution, provided the square matrix of dimension p,
∑n

i=1 Xi Xi′, is invertible. In this case:

β̂ = (
n
∑
i=1

Xi Xi′)
–1

(
n
∑
i=1

XiYi) .

You can also write:

β̂ = (1n
n
∑
i=1

Xi Xi′)
–1

(1n
n
∑
i=1

XiYi) , (2.4)

which is the empirical counterpart of the theoretical value of the regression coeffi-
cient, that is, β0 = E[XX′]–1 E[XY]. The following remark summarizes the multiple
ways in which OLS can be defined.
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Remark 2.1 Threeways todefineOLS

1. As empirical counterpart to one or more moments (2.4). This approach, often the first
one taught in statistics, is called the method of moments.

2. As a solution to the empirical counterpart of an estimating equation, (2.3). Here, β̂ is
the value that ensures the estimated residuals are orthogonal to the regressors. This
approach underlies the generalized method of moments (GMM), see Section 2.5.

3. By minimizing the empirical quadratic risk (2.1), earning the name “least squares.”
This philosophy of minimizing a loss function is also the underlying principle of
maximum likelihood estimation, or empirical risk minimization methods in machine
learning.

This estimator has several desirable properties under the following assumption:

Assumption 2.1 (Linear model). Consider the iid sequence of random variables
(Yi,Xi)i=1, . . . ,n such that:

Yi = X′iβ0 + εi,

where E[εi|Xi] = 0, E[XiXi′] exists and is non-singular (or equivalently: E[XiXi′] is
of rank p). Also assume that E[‖εiXi‖22] < ∞.

Theorem 2.1 (Asymptotic distribution of the OLS estimator) Under Assumption 2.1:

√n (β̂ – β0)
d⟶  (0,E[XX′]–1E[ε2XX′]E[XX′]–1) , as n → ∞.

This theorem indicates that as the sample size increases, the ordinary least squares
estimator approaches the true value β0 at a rate proportional to the square root of
the sample size. This is good news: the more observations we have, the closer our
estimator gets to the true value β0. However, the marginal information value pro-
vided by a new observation decreases at a rate proportional to n–1/2. This result also
implies that the estimator converges in probability to β0.

Note that we can further simplify the asymptotic variance of Theorem 2.1 by
assuming that E[ε2XX′] = E[ε2]E[XX′] (or E[ε2|X] = σ2). This assumption is
known as homoscedasticity. In this case, two of the matrices in the variance for-
mula cancel out, and we obtain the following asymptotic variance: E[ε2]E[XX′]–1.
However, this assumption is often unnecessary, so we often prefer to stick to the
formula given by Theorem 2.1. In this case, this variance can be estimated using the
heteroskedasticity-robust or sandwich formula:
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V̂ := [1n
n
∑
i=1

XiXi′]
–1

[1n
n
∑
i=1

ε̂2i XiXi′] [
1
n

n
∑
i=1

XiXi′]
–1

,

where ε̂i = Yi – Xi′β̂.
Theorem 2.1 is useful because it allows to approximate the distribution of β̂when

n is large enough, and therefore to build tests as well as confidence intervals. For
example, a bilateral asymptotic confidence interval of level 1–α for the j-th element
of β0 is given by:

CI1–α = [β̂j ±√
V̂j,j

n Φ (1 – α
2)] ,

where Φ(.) is the cdf of  (0, 1). Note that, thanks to Theorem 2.1,

P [β0,j ∈ IC1–α] → 1 – α, as n → ∞.

In other words: for sufficiently large n, the true value β0,j will be contained in this
interval with probability 1 – α. Likewise, an asymptotic level α test of the null
hypothesis H0: β0,j = c, for a real number c, is given by:

1{
|||||

√n (β̂j – c)

√V̂j,j

|||||
> Φ (1 – α

2)} .

Additional references

Wooldridge (2002) is an important reference for linear econometrics.

2.2 Singular valuedecomposition

Before discussing the limitations of OLS, we introduce a useful mathematical tool
for analyzing matrices called singular value decomposition (SVD). It will come in
handy several times in this book.

The rank of a n × pmatrix X, which is denoted by r(X) ≤ min(n, p), is the dimen-
sion of the vector space spanned by its column vectors. An important mathematical
result is that any real such matrix possesses the following SVD:

X = USV ′, (2.5)

where U and V are square matrices of dimension n and p respectively such that
U ′U = In and V ′V = Ip. S is a rectangular diagonal matrix, i.e., any entry si,j of
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S such that j ≠ i is equal to 0. The diagonal entries of S, denoted si are known as
singular values and they are unique and positive. The convention is to sort them
in descending order: s1 ≥ s2 ≥ · · · ≥ 0. They are strictly positive until the r(X)-th
after which they become equal to zero. This implies that Equation (2.5) can also be
rewritten with S a square matrix of dimension r(X) and the second dimension of
both U and V also changed to r(X):

X =
r(X)
∑
j=1

sjujv′j ,

where uj and vj are the j-th rows of U and V respectively. So in this case, X can be
seen as a sum of matrices of rank 1.

The SVD is a multi-purpose tool. First, it can help detecting multicollinearity or
anticipate numerical problems when inverting the Grammatrix. Indeed, notice that
if sj = 0 for j ≤ p, then X ′X is singular and the OLS estimator cannot be computed.
Or even if sp > 0 but it is very close to zero, it might result in numerical instabilities
when inverting X ′X. Notice here the connection with principal component analysis
(PCA): since X ′X = VS′SV ′ and V ′V = Ip, s2j is the j-st largest eigenvalue of X ′X. As
a consequence:

X ′X =
r(X)
∑
j=1

s2j vjv′j ,

and v1 is the first principal component (ormode) of X ′X, associated with the highest
variance.

A second purpose is to compute the pseudo-inverse of a squarematrix, also called
the Moore-Penrose inverse. A direct application in econometrics is when consider-
ing the covariance matrix of the features, X ′X. Indeed, since a non-singular Gram
matrix means that r(X) < p or equivalently that s2j = 0 for some j ≤ p, it also yields
that the OLS solution using X as a feature matrix cannot be computed. A general-
ized inverse of X ′X (or pseudoinverse), called the Moore-Penrose inverse, is then
naturally defined from the SVD by taking the inverse of the positive eigenvalues:

[X ′X]+ :=
r(X)
∑
j=1

s–2j vjv′j .

Third, the SVD can be a tool for dimension reduction by producing a low-rank
approximation of X, as we will exploit later when doing factor analysis (2.17). From
(2.5), a natural way to approximate X is to truncate its representation to the first
K ≤ r(X) components:

X̂ =
K
∑
j=1

sjujv′j .
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This decomposition is optimal in the sense that it allows to explain the maximum
variance among all possible approximations of K components.

2.3 Highdimension andpenalized regressions

2.3.1 When OLS fail

Let us continue with the simple linear regression from Section 2.1. Xi is a random
vector of dimension pwith p < n – we are therefore in a case of low dimension – and
we denoteXi,j as the j-th component ofXi. The estimator (2.1) has a unique analytical
solution in the form given by Equation (2.4) provided that the matrix ∑n

i=1 XiXi′/n
(the Gram matrix) is invertible, which requires, in particular, that the columns of
the n × p matrix (Xi′)i=1, . . . ,n be linearly independent.

In the aforementioned context, we define high dimension as having a large number
of regressors, i.e., p > n or simply when p is proportional to n. Two problems then
arise: (i) the accuracy of the estimator (2.1) deteriorates (increased variance) due
to multicollinearity, and (ii) it becomes impossible to calculate (if the Gram matrix
∑n

i=1 XiXi′/n is no longer invertible). The so-called “high-dimensional” statistics has
developed a whole range of techniques to address this issue, and this is what we will
introduce in this section.

2.3.2 Ridge regression

For a penalty level λ ≥ 0, the Ridge estimator is defined as the solution to the
minimization program:

β̂R(λ) = argmin
β∈Rp

1
n

n
∑
i=1
(Yi – Xi′β)2 + λ ‖β‖22 , (2.6)

where ‖β‖2 = √∑p
j=1 β2

j . This program adds an ℓ2 penalty to the standard OLS
objective function. Solving the previous program, we find:

β̂R(λ) = [1n
n
∑
i=1

XiXi′ + λIp]
–1 1

n

n
∑
i=1

XiYi.

Through the analytical solution, we can see that the penalization by the ℓ2 norm
leads to the additional term λIp, which makes the ∑n

i=1 XiXi′/n + λIp matrix non-
singular when λ > 0 even if ∑n

i=1 XiXi′/n is not of full rank. From the previous
section on the SVD, we can check that the extra term in the sum shifts the eigen-
values of the new matrix away from zero by λ, allowing to compute its inverse. The
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larger λ, the more the Ridge estimator will shrink the OLS towards the null vector.
If λ → ∞, β̂R(λ) → 0. Conversely, if λ = 0, it becomes the OLS solution when it exists.
If the OLS solution does not exist, we can rely on the following lemma to study the
behavior of the Ridge estimator as λ approaches zero from the right:

Lemma 2.1 (Ridge-less regression). When λ → 0, the solution of (2.6) becomes theOLS
using the pseudo-inverse of the covariance matrix:

β̂R(λ) → [1n
n
∑
i=1

XiXi′]
+ 1
n

n
∑
i=1

XiYi,

where [∑n
i=1 XiXi′/n]

+ means the Moore-Penrose inverse of ∑n
i=1 XiXi′/n.

A proof, which is a simple application of Section 2.2, can be found at the end of
the chapter.

In practice, it is important to note that the solution is sensitive to the scale of
the regressors. It is therefore preferable to normalize them, for example by dividing
them by their standard deviation or by scaling them to the [0, 1] interval using the
transform x → (x – min(x))/(max(x) – min(x)). It is also possible to penalize each
element of β differently or not to penalize them all. Typically, we don’t penalize the
intercept, so we solve instead:

min
β∈Rp

1
n

n
∑
i=1
(Yi – β1 – X′i,–1 β–1)2 + λ

p

∑
j=2

β2
j ,

where for a vector x of dimension p, x–1 means the vector xwhere its first component
is removed.

2.3.3 Lasso regression

For a penalty level λ > 0, the Lasso estimator is defined as the solution of the
following minimization program:

β̂L(λ) ∈ argmin
β∈Rp

1
n

n
∑
i=1
(Yi – Xi′β)2 + λ ‖β‖1, (2.7)

where ‖β‖1 = ∑p
j=1 |βj|. Just like in the case of the Ridge estimator, λ defines

the penalty level. Note that β̂L(λ) may not be unique and that the Lasso does
not have a closed-form solution in general. However, at a fixed value of λ, the
prediction Xi′β̂L(λ) is unique across the observations i = 1, . . . , n. There are
efficient algorithms to solve this optimization program, such as the Fast Iterative
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Shrinkage-Thresholding Algorithm (FISTA) by Beck and Teboulle (2014). Due to
the non-differentiability at zero of the ℓ1 norm penalty, the obtained solution is
frequently sparse in the sense that a number of elements of β̂L(λ) will be exactly
equal to zero. This property makes the Lasso a commonly used tool for selecting
variables. The theoretical properties of the Lasso are discussed in greater detail in
Sections 4.2 and 4.3.

Importantly, the Lasso suffers from a finite distance bias due to the penal-
ization, as even the non-zero coefficients are shrunk towards zero. In order to
reduce this bias, a second step called “Post-Lasso” (Belloni and Chernozhukov,
2013) can be implemented by re-estimating β0 using ordinary least squares, hav-
ing previously selected only the regressors corresponding to a non-zero coefficient
in β̂L(λ).

β̂PL(λ) = argmin
β∈Rp: βj=0 if β̂Lj (λ)=0

1
n

n
∑
i=1
(Yi – Xi′β)2 . (2.8)

2.3.4 Ridge or Lasso?

The choice of penalization between Ridge and Lasso is not trivial and leads to
solutions of different natures, reflecting different a priori assumptions on the under-
lying parameter β0. In the case of Ridge regression, the solution is considered dense
in the sense that the elements of β̂R(λ) are small but never exactly zero. In the
case of Lasso regression, the solution is said to be sparse in the sense that typi-
cally β̂L(λ) is a vector for which many elements are exactly zero, for sufficiently
large λ. Thus, only Lasso allows for variable selection. It is worth noting that Lasso
can be seen as a convexification of the ℓ0 norm penalization, which counts the
number of non-zero coefficients ‖β‖0. Nevertheless, this latter program with an ℓ0
penalization:

min
β∈Rp

1
n

n
∑
i=1
(Yi – Xi′β)2 + λ ‖β‖0 ,

is said “NP-hard,”meaning that it cannot be solved in polynomial time, since it is
necessary to evaluate 2p submodels and will not be tractable for large p.

In practice, the Ridge regression implicitly assumes that all the variables exert
a weak influence on the outcome. Conversely, the Lasso is employed for variable
selection, assuming that only a limited number of entries in β0 differ from zero or
when seeking an easily interpretable regression function. Thus, when Sala-I-Martin
(1997) wants to identify the determinant of economic growth, the Lasso should
be used, while Ferrara and Simoni (2019) use Ridge regression to reflect the fact
that each feature contains relevant information useful to predict macroeconomic
variables such as GDP.
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This choice can also be interpreted from a Bayesian perspective. Both Ridge and
Lasso can each be seen as Maximum A Posteriori (MAP) estimates coming from
different prior distributions of β0.

Lemma 2.2 (Bayesian interpretation). In themodel Yi = Xi′β0+εi where εi ~  (0, σ2):

– The Ridge Estimator is the MAP resulting from prior β0 ~ p (0, (σ2/λ)Ip),
– The Lasso estimator is the MAP resulting from the prior β0 ~ (1/λ)⊗p,
where (1/λ) is a notation for the Laplace distribution of parameter 1/λ,
characterized by density x↦ (λ/2)e–λ|x|.

These distributions imply that β0 tends to concentrate around the null vector, given
that E[β0] = 0. Note that the variance of the prior distribution varies inversely pro-
portional to the penalty λ: the greater λ, the more the prior distribution will be
concentrated around the null vector. To see why, remember that the variance of
a Laplace distribution of parameter 1/λ is 2/λ2.

Finally, for α ∈ [0, 1] and λ > 0, the elastic net combines these two types of
penalizations:

β̂E(λ, α) = argmin
β∈Rp

1
n

n
∑
i=1
(Yi – Xi′β)2 + λ(α ‖β‖1 + (1 – α) ‖β‖22), (2.9)

where of course β̂E(λ, 1) = β̂L(λ) and β̂E(λ, 0) = β̂R(λ). As soon as α>0, the pro-
posed solution will be sparse, like for the Lasso.

There are other types of more sophisticated penalizations, reflecting some prior
on the sparsity patterns, such as the Group-Lasso (Lounici et al., 2011). The Group-
Lasso defines groups of variables that are assumed to be non-zero all together, but
assumes that there is sparsity at the group level. This may be the case, for example,
when considering baseline regressors interacted with sociodemographic categories.
In this context, it can reasonably be assumed that if one of the coefficients is differ-
ent from zero for a given category, it will also be relevant for other categories. For
example, it may be assumed that the same variables explain wages for men and for
women (e.g., experience, level of education) even if they do so to different extents.

More formally, let  = {G1, . . . ,GG} be a partition of {1, . . . , p} into G groups
and βGg be the vector β whose entries outside ofGg are equal to 0. The Group-Lasso
is defined by:

β̂GL(λ,w1, . . . ,wG) ∈ argmin
β∈Rp

1
n

n
∑
i=1
(Yi – Xi′β)2 + λ

G
∑
g=1

wg
‖
‖βGg

‖
‖2 , (2.10)

where wg is the penalty specific to group g, which is usually set in proportion to the
square-root of the number of variables in group g,√Card(Gg).
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These considerations are important for estimation tasks. In prediction tasks,
selecting between various penalties is based on comparing average losses on a test
sample or out-of-sample data.

2.3.5 Choosing λ by cross-validation

The consistency guarantees for the Lasso estimator are based on theoretical penal-
ization choices and are in most cases unfeasible because they depend on unknown
quantities (see Section 4.3). Some authors have developed algorithms to achieve
asymptotically optimal level of penalization (for estimation) that work well in prac-
tice (see Chapter 7 for more details and e.g., Belloni et al., 2014, available in the
package hdm written in R).

However, in the vast majority of cases, especially when it comes to prediction
tasks, an empirical procedure called cross-validation is used to select the parameter
λ. The idea is to split the data into two disjoint folds, one in which we will compute
the estimator for a given λ, and the other inwhichwewill optimize this λ tominimize
the out-of-sample (OOS) error. The goal of this procedure is to avoid overfitting, i.e.,
to avoid fitting too closely to the training data and obtaining an estimator of β0 that
performs poorly on a sample that was not used for its computation. To convince
ourselves of the usefulness of this procedure, it is sufficient to note, for example,
that λ = 0 is a solution of:

min
λ ≥ 0

1
n

n
∑
i=1
(Yi – Xi′β̂L(λ))

2
,

because β̂L(0) = β̂ is a solution to Equation (2.1). However, this does not guaran-
tee that the estimator (2.1) will necessarily be the one that produces the minimal
mean squared error on a sample not used to compute it. To choose λ, it is therefore
necessary to use a different sample than the one used to compute β̂L(λ) at a given λ.

The procedure is as follows. To simplify the notations, it is assumed that n = K×n0
for two integers K and n0.

1. For an integer K, randomly draw a partition of 1, . . . , n into K groups of
equal sizes n0 ( folds). Let Gi ∈ 1, . . . ,K, be the group to which observation i
belongs.

2. For each k = 1, . . . ,K, using only the data not belonging to group k, compute
the Lasso or Ridge estimator:

β̂Rk (λ) = argmin
β∈Rp

1
(K – 1)n0

∑
i: Gi≠k

(Yi – Xi′β)2 + λ ‖β‖22 ,

β̂Lk(λ) = argmin
β∈Rp

1
(K – 1)n0

∑
i: Gi≠k

(Yi – Xi′β)2 + λ ‖β‖1 .
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3. For each k = 1, . . . ,K, compute the error on group k:

1
n0

∑
i: Gi=k

(Yi – Xi′β̂Rk (λ))
2
,

1
n0

∑
i: Gi=k

(Yi – Xi′β̂Lk(λ))
2
.

4. Aggregate the errors from the previous step and then minimize with respect
to λ:

λ̂R = argmin
λ≥0

1
K

K
∑
k=1

1
n0

∑
i: Gi=k

(Yi – Xi′β̂Rk (λ))
2
,

λ̂L = argmin
λ≥0

1
K

K
∑
k=1

1
n0

∑
i: Gi=k

(Yi – Xi′β̂Lk(λ))
2
.

In practice, values like K = 5 or K = 10 are commonly used. For example, Kohavi
(1995) suggests that a value of K = 10 provides the best trade-off between bias and
variance for a certain number of datasets. Cross-validation is a procedure whose
scope is broader: it aims to select relevant hyperparameters that govern the com-
putation of an estimator and can be applied to any model that depends on such
hyperparameters.

Additional references

Penalized regressions and cross-validation are detailed in Hastie et al. (2009). Recently,
Chetverikov andSørensen (2022) provide a theoretical justification for using cross-validation
with the ℓ1 penalization.

2.4 Maximum likelihood

2.4.1 General principle

The maximum likelihood method is very general but relies on strong distributional
assumptions. Under these assumptions, the obtained results are very powerful (con-
sistency, asymptotic normality, asymptotic efficiency in the sense that it reaches the
Cramér-Rao bound).

The principle is as follows: suppose we want to model the relationship between
explanatory variables Xi and an outcome variable Yi, and that we are willing to
make an assumption about the conditional distribution of Yi given Xi with an
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unknown parameter θ0 that we want to estimate. For example, we can assume that
Yi|Xi ~ f(·|Xi; θ0) for a conditional density f(·|x; θ). Themaximum likelihoodmethod
defines the maximum likelihood estimator (MLE) as the quantity that maximizes
the joint conditional density with respect to the unknown parameter:

θ̂MLE = argmax
θ

n
∏
i=1

f(Yi|Xi; θ).

In short, we look for the value of θ that maximizes the probability of observing the
sample that was actually collected. In general, for computational reasons – the prod-
uct of a large number of terms between zero and one quickly becomes very close to
zero – it is preferable to minimize the negative log-likelihood:

θ̂MLE = argmin
θ

1
n

n
∑
i=1

– log f(Yi|Xi; θ).

We can then note that θ̂MLE satisfies the following first-order condition:

1
n

n
∑
i=1

∂θ log f(Yi|Xi; θ) = 0,

which is nothing but the empirical counterpart of the equation:

E [∂θ log f(Y|X; θ)] = 0.

It can be shown that the expectation of the score function, ∂θ log f(Y|X; θ), vanishes
at the true value of the parameter E [∂θ log f(Y|X; θ0)] = 0. The MLE is therefore a
specific case of the GMM, which will be presented in Section 2.5. From this obser-
vation, it follows that it is often possible to dispense with distributional assumptions
to adopt what is called the pseudomaximum likelihood method (Gourieroux et al.,
1984).

Let us apply thismethod to the linearmodel given inAssumption (2.1).We further
assume that εi ~  (0, σ2). Denoting the parameters by θ := (β, σ), this implies that
the conditional distribution of Yi given Xi is given by:

f(y|x; θ) = 1
√2πσ2

exp [–1
2 (

y – X′β
σ )

2
],

A simple calculation shows that:

β̂MLE = argmin
β∈Rp

1
n

n
∑
i=1
(Yi – Xi′β)2,

σ̂2,MLE = 1
n

n
∑
i=1
(Yi – Xi′β̂MLE)

2
,
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which is nothing but … the least squares estimator for β0! For σ2, the least
squares estimator is generally defined as σ̂2MLE × n/(n – 1) because it is an unbi-
ased estimator. However, it should be noted that defining this estimator within the
framework of maximum likelihood is more restrictive as it imposes the additional
parametric assumption εi ~  (0, σ2), instead of assuming only homoscedasticity,
Var[εi|Xi] = σ2.

2.4.2 Examples and penalized versions

The penalized approach seen in Section 2.3 is not limited to the quadratic loss (lin-
ear regression model), but can also be adapted to any estimator that minimizes a
risk or maximizes a likelihood. To convince ourselves, here are some examples.

Example2.1 (Logistic regression) In this case, the target variable is binary, Yi ∈ {0, 1},
and we assume the following link function:

P[Yi = 1|Xi] = exp (Xi′θ0)
1 + exp (Xi′θ0)

,

or equivalently, P[Yi = y|Xi] = exp (yXi′θ0) / (1 + exp (Xi′θ0)) for y ∈ {0, 1}. The
individual contribution to the likelihood is given by exp (YiXi′θ) / (1 + exp (Xi′θ)).
Thus, we have the standard estimator of the maximum likelihood of θ0:

θ̂MLE = argmin
θ∈Rp

1
n

n
∑
i=1

ln (1 + exp (Xi′θ)) – YiXi′θ. (2.11)

A popular penalized version of (2.11) is (2.12) (e.g., Van de Geer, 2008):

θ̂L(λ) = argmin
θ∈Rp

1
n [

n
∑
i=1

ln (1 + exp (Xi′θ)) – YiXi′θ] + λ ‖θ‖1. (2.12)

We can alternatively use a ℓ2 norm penalty, and the concepts developed in Section
2.3 (cross-validation, etc.) apply to it as well.

Example 2.2 (Duration model with censoring) Suppose we are interested in the lifes-
pan of an individual (e.g., a humanbeing, a car, etc.) denoted by Ti ≥ 0. However, for
individuals still alive at the time of the study, we only observe a lower bound on this
duration, denoted by Ci. We denote the observed variable by Yi = min(Ti,Ci) and
Di = 𝟙 {Ti < Ci}. We assume Ti ⊥⊥ Ci|Xi and Ti follows an exponential distribution
Ti ~  (exp(Xi′θ0)). The maximum likelihood estimator of θ0 is:
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θ̂MLE = argmin
θ∈Rp

1
n

n
∑
i=1

Di (exp(Xi′θ)Yi – Xi′θ) + (1 – Di) exp(Xi′θ)Yi,

= argmin
θ∈Rp

1
n

n
∑
i=1

exp(Xi′θ)Yi – DiXi′θ.

We may prefer a penalized version of this estimator:

θ̂R(λ) = argmin
θ∈Rp

1
n

n
∑
i=1

exp(Xi′θ)Yi – DiXi′θ + λ ‖θ‖22 .

Additional references

The maximum likelihood method is detailed in most good textbooks on mathematical
statistics. A classic reference is Wasserman (2010).

2.5 Generalizedmethodofmoments

The GMM is a generalization of the definition of the OLS by Equation (2.3).
Indeed, in the linear model, the assumption that E[ε|X] = 0 involves the following
orthogonality equation:

E [X (Y – X′β0)] = 0,

which can be used to derive the estimator of the OLS by taking its empirical
counterpart, since β̂ solves the following equation of which β is the unknown:

1
n

n
∑
i=1
(Yi – Xi′β)Xi = 0.

In a more general way, one may want to define a model from a vector of random
variables U, a vector of coefficients θ, and momentsM that we want to set to zero:

M(θ) := E [ψ(U, θ)] = 0.

For example, in the standard linear model above, U := (Y,X) and θ := β. Let us
denote the empirical counterpart of this vector of moments by:

M̂(θ) := 1
n

n
∑
i=1

ψ(Ui, θ).
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The GMM θ̂n estimator of the parameter θ0 is then obtained by minimizing the
Euclidean norm of this vector ‖M̂(θ)‖22 := M̂(θ)′M̂(θ), which corresponds to the
following optimization program:

θ̂n := argmax
θ∈Θ

– ‖‖M̂(θ)‖‖
2

2
. (2.13)

The set of Assumptions 2.2 described below implies that M(θ) takes value 0 only
at the value θ0: ∀θ ∈ Θ, M(θ) = 0 ⟹ θ = θ0, and therefore the parameter
θ0 is identified in the set Θ. These assumptions allow us to prove the asymptotic
normality of the GMM estimator θ̂n. Denote by G := E [∇θψ(U, θ0)].

Assumption 2.2 (Regularity condition for asymptotic normality of θ̂n). Assume that:
1. θ0 is an inner point of Θ, which is a compact set;
2. ψ(u, ·) is continuously differentiable in a neighborhood  of θ0 with a proba-

bility close to 1;
3. E[‖ψ(U, θ0)‖2] and E[supθ∈ ‖∇θψ(U, θ)‖] are finite quantities;
4. The matrix G′G is non-singular.

Under Assumption 2.2, we obtain the following properties:

1. The objective function of the problem (2.13) converges in probability to

–M̂(θ)′M̂(θ)
p⟶ –E[ψ(U, θ)′]E [ψ(U, θ)] ,

a quantity which has a single maximum at θ = θ0;
2. The estimator θ̂n converges in probability to θ0 : θ̂n

p⟶θ0.
3. The estimator θ̂n is asymptotically normal and we have

√n (θ̂n – θ0)
d⟶  (0, (G′G)–1G′ΣG((G′G)–1)′) . (2.14)

Here, we recall the useful arguments to prove the asymptotic normality under
Assumption 2.2. We consider the first-order condition of (2.13),

∇θM̂(θ̂n)′M̂(θ̂n) = 0,

which is satisfied with probability close to 1. Then, using Taylor’s theorem at the
second order for M̂(θ̂n) and θ0, we obtain that there exists θ ∈ [θ0, θ̂n] such that:

∇θM̂(θ̂n)′M̂(θ̂n) = ∇θM̂(θ̂n)′M̂(θ0) +∇θM̂(θ̂n)′∇θM̂(θ)(θ̂n – θ0),
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So we have, with high probability:

√n (θ̂n – θ0) = (∇θM̂(θ̂n)′∇θM̂(θ))–1 (–∇θM̂(θ̂n)′ (√nM̂(θ0))) .

Then, using condition (3), we get

∇θM̂ (θ)
p⟶ G and ∇θM̂(θ̂n)

p⟶ G.

Using condition (4), √nM̂(θ0)
d⟶  (0, Σ), where Σ = E[ψ(U, θ0)ψ(U, θ0)′],

and using Slutsky’s theorem, we get (2.14). Thus, in (2.14), the asymptotic variance
simplifies to G–1Σ(G–1)′ and takes a specific form

V := G–1E [ψ(U, θ0)ψ(U, θ0)′] (G–1)′ . (2.15)

Additional references

Theoretical aspects of the GMM, particularly regarding asymptotic theory, are studied in
Newey and McFadden (1994).

2.6 Factormodels

Factor models are a dimension reduction technique that assumes that the depen-
dence between explanatory variables can be well approximated by a common
underlying (or latent) structure of lower dimension (e.g., Stock and Watson, 2002;
Bai, 2003; Bai and Ng, 2006; or Chapter 11.13 in Hansen, 2022). We recall the anal-
ogy with PCA and the estimation procedure for the resulting factors. In this section,
we consider static factormodels, and refer to Stock andWatson (2011) for a descrip-
tion of the estimation of dynamic factormodels.Wework in a time series framework,
as it is a framework where factor models are particularly well-suited, as we will see
in Chapter 11.

Consider a random vector xt of p, the approximation by a factor model (approxi-
mate factor model) assumes that

xt = Λ ft + εt, t = 1, . . . ,T, (2.16)

where Λ is a factor loading matrix of size p× r and ft is a vector of factors of size r×1.
The component Λft is common to the p variables, while εt is an idiosyncratic compo-
nent. The vector εt is assumed to have zeromean, to be uncorrelated with the factors
ft, E(ftε′t) = 0, and E(εtε′t) is assumed to be positive definite. In many economic
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contexts, it is reasonable to think that there exist unobserved factors linking the
components of the considered xt – for example, the results in different subjects on
an exam can be explained by underlying skills in analytical abilities, oral fluency,
patience, creativity, etc.

We can concatenate (2.16) at each date to obtain the following matrix form:

X
T×p

= F
T×r

Λ′
r×p

+ E
T×p

, (2.17)

where X = (x1, . . . , xT)′, F = ( f1, . . . , fT)′, and E = (ε1, . . . , εT)′. This matrix for-
mulation is the starting point for the connection with PCA, which allows for the
estimation of the factors.

One way to estimate the factors in (2.17) is to use the least squares, then consid-
ering the minimization in (Λ, F) of the criterion

T
∑
t=1

(xt – Λft)′(xt – Λft) = ‖X – FΛ‖2F, (2.18)

where ‖A‖F = √∑T
t=1∑

K
k=1 A

2
k,t is the Frobenius norm of matrix A. In order to iden-

tify (Λ, F), however, standardizations must be imposed because, for any matrix A
orthogonal size r× r, considering ΛA and A–1ft instead of Λ and ft leaves the product
Aft unchanged. The most appropriate normalization in terms of computational cost
depends on the order of p and T: if T < p, it is preferable to use the normalization
(N1) F′F/T = Ir (i.e., the factors are uncorrelated); if T > p, it is preferable to use the
normalization (N2) Λ′Λ = Ir. Let us give the intuition of the solution when using
(N2). For a fixed Λ, F̂ is solution of the ordinary least squares, thus

f̂t(Λ) = (Λ′Λ)–1Λ′xt = Λ′xt. (2.19)

By substituting this expression (2.19) of f̂t into the ordinary least squares objective
function (2.18), we obtain

1
T

T
∑
t=1

(xt – ΛΛ′xt)′(xt – ΛΛ′xt) = 1
T

T
∑
t=1

(x′txt – x′tΛΛ′xt)

= tr (Σ̂) – tr (Λ′Σ̂Λ) ,

where Σ̂=∑t xtx′t/T is the empirical covariance matrix. This matrix Σ̂ is a real sym-
metric matrix with eigenvectors denoted by θ1, . . . , θK and associated with ordered
eigenvalues, s1, . . . , sK. Using the properties of real symmetric matrices, we have:

max
(N2): Λ′Λ=Ir

tr (Λ′Σ̂Λ) =
r
∑
k=1

sk. (2.20)
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The maximum of this problem (2.20) is attained at Λ̂ = [θ1, . . . , θr]. This matrix Λ̂ is
thematrix composed of the first r eigenvectors θk of the empirical covariancematrix
of size p×p. We can deduce the factors f̂t = f̂t(Λ̂) using (2.19). By imposing (N1), we
obtain F̂ equal to T times the matrix formed by the eigenvectors of the matrix XX ′

of size T × T, and Λ̂
′
= (F̂′F̂)–1F̂′X = F̂′X/T.

This shows that the least squares estimator can be obtained using the eigendecom-
position of the empirical covariance matrix, hence the name “principal component
method” for this approach. Bai (2003) shows asymptotic convergence results for the
factors and weights when both T and p tend to infinity.

To determine the number of components, r, in this decomposition, we intro-
duce the eigenvalue ratio method (e.g., Bai and Ng, 2002; Lam and Yao, 2012; Ahn
and Horenstein, 2013). This method simply consists of selecting r as the value that
maximizes the decrease between two consecutive eigenvalues sk(Σ̂) of the empirical
covariance matrix Σ̂:

r̂ = arg max
r≤rmax

sk(Σ̂)
sk+1(Σ̂)

,

where rmax is a fixed upper bound a priori. This strong decrease after r̂ indicates that
adding the r̂ + 1 component will only bring little information to our approximation
compared to what is already retained.

Finally, let us describe how to use this lower-dimensional representation of the
explanatory variables in a regression (factor augmented regression). Consider the
observation of an i.i.d. sample (xt, yt, zt)Tt=1 satisfying the model

yt = f ′tγ + z′tβ + εt, (2.21)

xt = Λft + νt, (2.22)

E(ftεt) = E(ztεt) = E(ftν′t) = E(νtεt) = 0, (2.23)

where Λ is a p×rmatrix of factor weights, and ft is an r×1 factor vector. In thismodel,
xt impacts yt only through the latent factors. These factors often serve as controls in
the equation aimed at estimating the effect of z on y, which is the parameter of inter-
est. The estimation then proceeds in two steps. The first step involves estimating
the factors, and the second step involves regressing y on z and the estimated fac-
tors. In the case where T, r → ∞ jointly, Bai (2003) shows, among other things, that
this factor-augmented regression is consistent if T and p, the dimension of x, are
large.
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2.7 Random forests

2.7.1 Single sample trees

First, we describe how to grow a decision tree to estimate the conditional expectation
μ(x) = E [Y |X = x] from an iid sample (Ui)i=1, . . . ,n = (Yi,Xi)i=1, . . . ,n using recur-
sive partitioning. A decision tree estimates the conditional expectation of Y given X
by a piecewise constant function on a partition defined by the data. The construc-
tion method of a decision tree produces an adaptive weighting αi(x) to quantify the
importance of the i-th training sample Wi at the evaluation point X:

μ̂(x) =
n
∑
i=1

αi(x)Yi, with αi(x) := 1 {Xi ∈ L(x)}
|{i : Xi ∈ L(x)}| , (2.24)

where L(x) is the “leaf ” in which the point x falls. In other words, (2.24) is a locally
weighted average of the αi(x) of all Yi corresponding to an Xi falling in a neighbor-
hood (in the same leaf ) of the point x. The leaves constitute a partition of the feature
space  . This partition maximizes a global segmentation criterion.

More specifically, given a set A ∈  , each node of the tree partitions the feature
space into two child nodes A1, A2. For a random-split tree, this is done as follows:
(a) draw a variable j ∈ {1, . . . , p} according to a certain distribution (b) use a segmen-
tation test of the type Xj ≥ s where s is chosen to maximize heterogeneity between
the two child nodes A1, A2 (see below). Thus, this recursive partition construction
algorithm can be described as follows:

1. Initialization: initialize the list containing the cells associated with the root of
the tree  = () and the tree final as an empty list.

2. Expansion: for each node A ∈ :

IF A satisfies the stopping criterion (number of observations in the leaf less
than n0),
– Remove A from the list 
– Concatenate final = final + {A}.

ELSE randomly choose a coordinate from {1, . . . , p}, choose the best split
s in the segmentation test, and create the two child nodes by splitting .

Then remove parent node A and add the child nodes to the list =  – {A} + {child nodesA1 and A2}.

This algorithm, similar to the original algorithm by Breiman (2001), is described on
an example with n0 = 2 in Figures 2.1 and 2.2. To compute the prediction in a single-
sample decision tree, we simply take the average of the corresponding Yi outcomes
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Figure 2.1 Decision tree algorithm: steps 1 and 2.
Note: Example of a randomized tree using a minimum number of observations k = 2 in each leaf as a stopping
criterion.

of the observations that fall into the leaf L(x). Note that an additional regularization
step can be added to the above algorithm to cut the leaves according to a certain
pruning criterion. This step is not necessary in our context and was not used in the
original formulation by Breiman (2001).

2.7.2 Details on the segmentation test

For classification (when Y is binary), it is customary to use the initial CART (ClAs-
sification and Regression Tree) criterion which consists in choosing s to maximize
the homogeneity gain:
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Figure 2.2 Decision tree algorithm: steps 3, 4, and evaluation.
Note: Example of a randomized tree using a minimum number of observations k = 2 in each leaf as a
stopping criterion.

I(A1,A2) = G(A) – qG(A1) – (1 – q)G(A2),

where q = NA1/NA, and G(A) = 1 – Y 2
A – (1 – YA)2 is the Gini index, i.e., a measure of

homogeneity in the node. A good splitting generates two “heterogeneous” children
containing “homogeneous” observations (G(A) = 0 if YA is equal to 0 or 1).

For regression, we consider a similar structure, where we maximize the decrease
in variance, which can be rewritten as

I(A1,A2) = E(A) – (qE(A1) + (1 – q)E(A2)),

where E(A) = ∑i,Xi∈A (Yi – YA)2 /NA. Thus, the segmentation criterion consists in
finding the splits that decrease the variance the most, thus minimizing qE(A1) +
(1 – q)E(A2) for all splits.
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2.7.3 Random forests

In a final step, we aggregate the trees formed on all possible subsamples of size s
from the training data U1, . . . ,Un:

μ̂(x;U1, . . . ,Un) = ( ns )
–1

∑
1≤i1< . . . <is≤n

T(x;Ui1 , . . . ,Uis), (2.25)

where ( ns ) is the number of combinations of s elements among n. The estimator of

Equation (2.25) is evaluated using Monte Carlo methods: we draw B samples with-
out replacement denoted by b, b = 1, . . . ,B of size s, (U∗

i1 , . . . ,U
∗
is), and consider

the following approximation of (2.25):

μ̂(x;U1, . . . ,Un) ≈
1
B

B
∑
b=1

T(x;U∗
b,1, . . . ,U∗

b,s), (2.26)

where the learning is based on

T(x;U∗
b,1, . . . ,U∗

b,s) = ∑
i∈b

α∗b,i(x)Y∗
b,i,

α∗b,i(x) =
1 {X∗

b,i ∈ L∗b(x)}
|{i : X∗

b,i ∈ L∗b(x)}|
. (2.27)

This aggregation strategy, known as bagging, reduces the variance of the estimator
of μ (see e.g., Bühlmann and Yu, 2002, for a more detailed analysis).

Additional references

Chapter 15 of Hastie et al. (2009) or Biau and Scornet (2016) provide a detailed explanation
of how random forests work.

2.8 Neural networks

Neural networks are a difficult tool to introduce and comprehend without going
into details and gaining practical experience. They can be perceived as a mere alter-
native algorithm for performing classification or regression tasks, i.e., to model the
relationship between X and Y. In fact, to put it simply, a neural network is a composi-
tion of amultitude of non-linear functions in order tomodel the complex interaction
between explanatory variables and the variable we are trying to predict. However,
this is far too reductionist. On one hand, their
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differentiation and the techniques developed to train them, make them suitable for
a multitude of tasks that go well beyond simple classification or regression. On the
other hand, the very philosophy of these tools makes them objects whose practical
use requiresmaking significant choices, both for themodel and for the optimization
algorithm – training neural networks is an art more than a scientific endeavor. Neu-
ral networks in general, and certain architectures in particular, are at the foundation
of recent advances in artificial intelligence.

This section provides a brief introduction to neural networks, mainly to show
their specificity compared to other methods and to build the prerequisites for the
fifth part, which deals with text data. The use of neural networks in empirical eco-
nomics is limited at present, partly because these techniques can be complex to
implement, and partly because few theoretical results guarantee their performance,
which also limits the ability to make inferences with this type of model. Never-
theless, this state of affairs could soon change. For example, Farrell et al. (2021)
highlight non-asymptotic bounds and study the convergence rate of feed-forward
neural networks.

2.8.1 Architecture

In a very basic way, a neural network can be seen as a function μ(.) that, given an
input vector X, associates a representation or an output, μ(X). In general, and for
most machine learning tasks, this output will take the form of a conditional expec-
tation. For example, in a classification task, we would like the neural network to
return the conditional probability of belonging to each category in the output space.
However, we may simply want the neural network to return an abstract vector rep-
resentation of the input in an arbitrarily high-dimensional space in order to both
summarize the information contained in the input and create a space whose struc-
ture reflects logical relationships between the inputs. This latter use, aiming to create
embeddings, constitutes one of the strengths of deep learning, which we will study
in the fifth part, and more precisely in Chapter 13.

For now, let us focus on a classical prediction task using a simple neural net-
work called a feed-forward neural network. The term deep learning that accompanies
neural networks comes from the fact that the function μ(.) is constructed by com-
posing multiple non-linear functions – the more functions there are, the deeper the
network. Thus, a network with two layers can be written as follows:

μ(x) = g2(b2 + Θ2g1(b1 +Θ1x)), (2.28)

where

h1(.) = g1(b1 +Θ1.)

is the first layer consisting of the parameter matrix Θ1 of dimension l1 × p (also
called weights in the terminology of neural networks), the parameter vector b1 of
dimension l1 (also called bias), and the
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element-wise. Similarly, h2(.) = g2(b2 + Θ2.) is the second layer (final layer) con-
sisting of the parameter matrixΘ2 of dimension 1 × l1, the scalar parameter b2, and
the activation function g2(.) that is also applied element-wise. In this sense, the depth
of the network is defined by the number of layers it consists of, here two. In a very
basic way, a linear regression is a shallow neural network, consisting of only one
layer and an identity activation function since in this case μ(x) = X′β. The width of
a network is defined by the dimension of the intermediate space, or the number of
neurons, here l1. The larger and deeper a neural network is, the greater its capacity
to approximate functions from a complex class – see the universal approximation
theorems (e.g., Cybenko, 1989; Hornik, 1991; Rolnick and Tegmark, 2018). This
generally implies that a performing neural network must consist of a large number
of parameters, often exceeding the size of the training dataset. This is referred to as
over-parametrization.

According to the traditional bias-variance trade-off to which standard machine
learning models are subject – the model must be complex enough to capture
the richness of the data, but not excessively so as to risk capturing noise –
one might expect neural networks to suffer from chronic overfitting and be
poorly generalizable. Belkin et al. (2019) show that neural networks surpass
this trade-off by reducing the training loss to zero and entering a regime
where the model interpolates the data without being less generalizable – on the
contrary.

There are infinite possibilities for the choice of activation functions g1, g2. How-
ever, a number of them are commonly used for their ability to capture complex
interactions between X and Y or for their impact on the network’s learning speed,
for example:

– Sigmoid: g(x) = exp(x)/(1 + exp(x)),
– Rectified Linear Unit (ReLU): g(x) = max(0, x),
– Soft-max: g(x1, . . . , xp) = (exj)j=1, . . . ,p /∑j=1, . . . ,p exj .

Chapter 6 of Goodfellow et al. (2016) provides a comprehensive overview of com-
monly used activation functions. Generally, neural networks are often – but not
exclusively – used for specific tasks involving unstructured data such as text or
images. In a number of cases, it may be useful to base the architecture of a network
on an existing network available on the internet: on one hand, these architectures
have often proven themselves in well-known challenges such as the ImageNet Large
Scale Visual RecognitionChallenge (ILSVRCor simply ImageNet), and on the other
hand, these pretrained networks with optimized parameter values for certain tasks
can also be retrieved. This is referred to as transfer learning when initializing param-
eter values for a given task based on values obtained for another task. For example, in
the field of computer-assisted vision, the VGG16models (Simonyan and Zisserman,
2015) or GoogLeNet (Szegedy et al., 2015) are often interesting starting points.
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2.8.2 Loss functions

Training a neural network means seeking to modify the values of the parameters
b1,Θ1, b2,Θ2 in order to optimize the performance in terms of prediction. There-
fore, a loss function that aligns with the training task is essential. Thus, the values of
the parameters will be modified in order to minimize this loss function estimated
on a sample:

1
n

n
∑
i=1
ℓ(Yi, μ(Xi)).

For a regression task, one could want to use loss functions such as:

– Mean Squared Error (MSE): ℓ(Y, Ŷ) = (Y – Ŷ)2,
– Mean Absolute Error (MAE): ℓ(Y, Ŷ) = |Y – Ŷ|.

For a classification task, the binary cross-entropy is typically the primary choice.
It is defined as ℓ(Y, Ŷ) = Y log(Ŷ) + (1 – Y) log(1 – Ŷ). In general, one may seek to
minimize the negative of a log-likelihood function (see Section 2.4).

2.8.3 Training through backpropagation

Once the structure of a neural network has been defined and a loss function has been
chosen, a strategy must be defined to optimize the parameters. In general, this is not
a problemwhen the objective function is convex, as a standard gradient descent can
be implemented, possibly using theHessianmatrix to determine the step size at each
iteration. However, in the case of neural networks, which are composed of functions
that make the objective function non-convex and can contain thousands ormillions
of parameters, this is not the case, and alternative strategies must be established. In
particular, stochastic gradient descent (SGD;Bottou, 2010) is themain optimization
tool. The idea of this algorithm is that instead of computing the gradient over the
entire training sample at each optimization step, it is only computed over a randomly
selected subset of the sample. The true gradient is replaced with a noisy version in
order to save computation time. At each optimization step, a random subset of the
training sample, called a batch and denoted  with size B ≪ n, is first randomly
chosen. Then, for a given learning rate η > 0, the parameters are updated using the
following rule:

Θt+1 = Θt – η 1
B ∑

i∈
∂Θℓ(Yi, μ(Xi)). (2.29)

A full pass over the entire training set, partitioned into batches, is called an epoch.
In practice, the gradient descent algorithms available in the software used to train
neural networks are more complex and incorporate techniques aimed at speeding
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up convergence or move out of local minima (e.g., the famous Adam algorithm by
Kingma and Ba, 2015). However, at the level of abstractionwe are currently at, going
into details is not necessary.

The first step is to compute the gradient recursively using the chain rule:
(g ∘ f)′ = f ′ × (g ′ ∘ f). Repeatedly applying this rule to optimize the parameters
of each layer yields the backpropagation algorithm (Rumelhart et al., 1986). Here
is what it would look like for our neural network (2.28) with an arbitrary loss
function:

1. Since they will be involved in all subsequent calculations, we first compute the
following two quantities:

∂μ(Xi)ℓ(Yi, μ(Xi)),
g′2(b2 +Θ2h1(Xi)).

This gives us an initial value for the gradient:

g ← ∂μ(Xi)ℓ(Yi, μ(Xi)) × g′2(b2 +Θ2h1(Xi)).

2. Let us then compute the derivatives of the loss function with respect to the
parameters of the second layer:

∂b2ℓ(Yi, μ(Xi)) = ∂μ(Xi)ℓ(Yi, μ(Xi)) × g′2(b2 +Θ2h1(Xi)),

∂Θ2ℓ(Yi, μ(Xi)) = ∂μ(Xi)ℓ(Yi, μ(Xi)) × g′2(b2 +Θ2h1(Xi)) × h1(Xi).

We can see that they depend on the value of our gradient, so we can directly
compute them as follows:

∂b2ℓ(Yi, μ(Xi)) = g,
∂Θ2ℓ(Yi, μ(Xi)) = g × h1(Xi).

We can then update these two parameters using the rule given by Equation
(2.29).

3. Finally, we need to update the parameters of the first layer. For this, it is first
necessary to backpropagate (update) the gradient:

g ← ∂μ(Xi)ℓ(Yi, μ(Xi)) × g′2(b2 +Θ2h1(Xi)) ×Θ2
′ ⊙ ∂g1(b1 +Θ1Xi),

where Θ2
′ denotes the transpose of the matrix Θ2, and ⊙ represents

element-wise vector multiplication. This amounts to using the recursive rule:

g ← g ×Θ2
′ ⊙ ∂g1(b1 +Θ1Xi).
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4. We can then compute the gradient for each parameter in the first layer.
A calculation yields:

∂b1ℓ(Yi, μ(Xi))
= ∂μ(Xi)ℓ(Yi, μ(Xi)) × g′2(b2 +Θ2h1(Xi)) ×Θ2

′ ⊙ ∂g1(b1 +Θ1Xi),

∂Θ1ℓ(Yi, μ(Xi))
= ∂μ(Xi)ℓ(Yi, μ(Xi)) × g′2(b2 +Θ2h1(Xi)) ×Θ2

′ ⊙ ∂g1(b1 +Θ1Xi) × Xi′.

As previously, it is therefore sufficient to perform the calculation:

∂b1ℓ(Yi, μ(Xi)) = g,
∂Θ1ℓ(Yi, μ(Xi)) = g × Xi′,

and then update according to Equation (2.29).

In a nutshell, the backpropagationmethod operates by recursively updating the gra-
dient to compute, at each step, the gradient corresponding to each parameter. The
calculation is done from the layer closest to the output to the layer closest to the
input, hence the term “backpropagation.” For more details or a more abstract expla-
nation, the reader can refer to Goodfellow et al. (2016, p. 206). The most commonly
used softwares such as pytorch (Paszke et al., 2019) or tensorflow (Abadi
et al., 2016) define objects called tensors that store the sequence of operations that
led to their value – the computational graph – in order to perform this gradient
calculation automatically. This is called “automatic differentiation” or “auto-diff.”
The term “neural network” reflects the importance of the graph that connects each
neuron to achieve the output layer prediction.

One of the dangers of this technique, which is inherent to neural networks
in general, is the vanishing gradient problem, where the gradient becomes very
close to zero so that the network stops learning. Indeed, if at any moment dur-
ing the descent process the gradient becomes too close to zero – for example,
due to an activation function whose derivative is very small, as is the case for the
sigmoid function – information no longer passes through the network, and the
parameters belonging to the first layers are no longer updated. In other words, the
network no longer learns properly. In general, one could say of stochastic gradi-
ent descent what Winston Churchill said about democracy: it is the worst system,
except for all the others. Given the structure of neural networks, it is not rea-
sonable or even possible to use efficient optimization algorithms. Instead, we are
forced to use stochastic gradient descent, knowing that there are very few theoreti-
cal guarantees on its convergence properties. In order to guide the training process
of a neural network towards obtaining parameters that allow optimal performance
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(i.e., minimize generalization error), a number of regularization techniques can be
implemented, such as choosing a certain smoothing of the gradient, adjusting the
learning rate, penalizing high parameter values with an ℓ2 norm, randomly setting
some parameters to zero via dropout layers, augmenting the data through specific
transformations, etc. But their description goes beyond the introductory scope of
this section.

2.8.4 Training tips

Neural networks are notoriously difficult objects to train, due to the multitude of
parameters to tune. However, we can provide a set of tricks that make it easier to
successfully train them. Several of these tricks are inspired by an excellent blog post
by Andrej Karpathy: karpathy.github.io/2019/04/25/recipe.

The first reflex to adopt applies more broadly to any machine learning project: it
consists of thoroughly exploring the data. The goal of this step is to get a better idea
of the variability in the data, evaluate the respective quantities of noise and signal
in order to find a possible strategy for filtering the noise (e.g., removing ambiguous
examples or mislabeled data), identify outliers, compare the frequency of certain
classes or features to identify imbalances, etc.

Because their optimization is generally not a convex problem, neural networks
require the use of stochastic gradient descent to learn, which poses a number of com-
plications compared tomore standardmethods. In addition, debugging amodel that
does not perform as expected can quickly become frustrating. Therefore, a number
of principles can guide practice:

– Start with a simplemodel and gradually add complexity. Largemodels (very
deep or containing millions of parameters) can be difficult to train, especially
due to the problem of vanishing gradient, i.e., the gradient of the layers close
to the input becomes close to zero, which impairs the ability of these layers
to learn during gradient descent. It is therefore preferable to start with a rudi-
mentary model to which, for example, layers are gradually added. Similarly, it
is not necessary to be creative: starting from awell-known architecture that has
proven its worth should ensure a certain level of performance. At this stage of
research, the goal is to have a model that: (i) learns, (ii) without its cost being
exorbitant, in order to (iii) obtain a correct performance that can serve as a
starting baseline.

– Early stopping. During training, it is important to regularly report the met-
rics of interest (e.g., at each epoch, possibly every ten batches if an epoch takes
considerable time), both on the training sample and on a validation sample.
In this regard, the closer the metric is to the application, and interpretable by

http://karpathy.github.io/2019/04/25/recipe
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the practitioner, the better the training can be monitored. Thus, when train-
ing a classifier, it is important to report both the value of the loss function
(usually binary cross-entropy) and accuracy, as well as precision or recall if
relevant. It is important to monitor the learning curve of the model in order
to check, on the one hand, that the loss function decreases with each epoch,
and on the other hand, that the model does not start to overfit, which can be
detected when the validation loss starts to increase while the training loss con-
tinues to decrease. In this regard, it may be interesting to implement what is
called early stopping, by saving the model during training every time the val-
idation loss decreases, to be able to go back to the best model even if training
diverges.

– Data augmentation. Data augmentation is a practice that involves generating
newobservations through random transformations, in order tomake themodel
robust to small deviations in the datasets. This is a very common practice when
it comes to image processing, by randomly applying rotations, translations,
truncations, adding noise to pixels, etc., to training data. Some practitioners
even suggest adding unlabeled data with the model’s prediction when it is
above 90% in case of a shortage of observations when training a classifier.
In natural language processing, this practice is rarer because non-meaningful
strings of characters can be more easily identified and eliminated with regular
expressions, but some strategies seem promising (Feng et al., 2021).

– Regularizing the model. Given that they often contain a number of param-
eters much larger than the number of observations, neural networks are
highly prone to overfitting. Several strategies can be implemented to minimize
this risk, including early stopping of training and data augmentation (refer
to previous points for details). To regularize more directly, it is possible to
consider models with lower dimension, introduce dropout layers that set cer-
tain weights to zero according to a Bernoulli distribution with an arbitrary
parameter, or modify the loss function to incorporate an ℓ2 penalty simi-
lar to Ridge regression in order to force the parameters to not deviate too
much from zero (see Section 2.3.2 – a practice known as weight decay in deep
learning).

– Retraining the samemodel with different parameters. Unlike other machine
learning algorithms, neural networks can be retrained to improve performance.
It may be interesting to let themodel “simmer” for a bit longer than planned, or
with a different learning rate, bymodifying the batch size, changing the training
data, etc. Similarly, when new observations are available, it is recommended to
start from the previous parameter values rather than starting from scratch –
in a logic akin to transfer learning. Section 14.3 explores these options in the
context of language models.
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As a word of conclusion, neural networks are powerful tools, and we will illustrate
their performance in this book, notably for language-processing tasks. Nevertheless,
note that some papers such as Grinsztajn et al. (2022) point out that when it comes
to tabular data which are ubiquitous in empirical economics, tree-based methods
still outperform neural networks.

Additional references

The book Goodfellow et al. (2016) is a reference on the subject. Fan et al. (2021) offers a sta-
tistical perspective on these somewhat peculiar objects called neural networks. Specifically,
in non-parametric regression, when estimating functions that have some form of structured
sparsity, Schmidt-Hieber (2020) shows that estimators based on sparsely connected deep
neural networks with ReLU activation function achieveminimax optimal convergence rates.

Currently, training neural networks is primarily a matter of practice rather than theory.
Tricks can be found in academic literature, as well as on dedicated forums or blogs. In
this regard, we can mention Lilian Wengʼs blog (lilianweng.github.io/lil-log/), this excellent
post by Andrej Karpathy (karpathy.github.io/2019/04/25/recipe/), as well as the digital book
Godbole et al. (2023).

2.9 Summary

Key concepts

Linear regression (ordinary least squares, OLS), Ridge estimator, Lasso estimator, cross-
validation, maximum likelihood, ℓ1 or ℓ2 penalization, generalized method of moments
(GMM), factor model, singular value decomposition (SVD), principal component analysis
(PCA), decision tree, random forest, bagging, neural network, feed-forward neural network,
deep learning, stochastic gradient descent (SGD), backpropagation algorithm.

Additional references

Specific references have been provided at the end of each section, but readers coming from
an economics backgroundmay find it beneficial to read Athey and Imbens (2019).

http://lilianweng.github.io/lil-log/
http://karpathy.github.io/2019/04/25/recipe/
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2.10 Proofs andadditional results

Proof of Lemma 2.1 Following Section 2.2, we can see that from the SVD of
X = USV ′ we get X ′X = VS′SV ′. So usingmatrix notations and the fact thatV ′V = Ip,
we can write:

βR(λ) = [X ′X + λIp]–1 X ′y

= [VS′SV ′ + λIp]–1 VS′U ′y

= V [S′S + λIp]–1 S′U ′y.

Then because all these matrices are diagonal, we have:

diag ([S′S + λIp]–1 S′) = ( sj
s2j + λ)

j=1, . . . ,p
.

As λ → 0, this last term is either equal to s–1j if sj > 0 or to 0 if sj = 0. Hence,
[S′S + λIp]–1 S′ → S+ and

βR(λ) → VS+U ′y = [X ′X]+ X ′y.

□



Chapter 3
Causal inference

This chapter presents the intellectual framework underlying causal inference, which
is the process by which one can establish a causal relationship between a phe-
nomenon (often referred to as a treatment or policy in economics) and its effects.
We first introduce the potential outcomes model, and then discuss the associated
tools.

3.1 Definitions

We start by distinguishing between different types of parameters: probabilistic,
statistical, and causal. Probabilistic parameters are defined based on the joint prob-
abilities of the variables in the model, whether they are observed or not. Statistical
parameters are defined based on the joint probabilities of the observed variables, for
example, the conditional expectation of the outcome variable given observed char-
acteristics or correlations between observed variables. Finally, causal parameters are
defined based on a causal model and are not statistical parameters, for example, the
causal effect of a treatment on a variable, all else being equal (see Section 1.5 in Pearl,
2000). The identification of these causal parameters requires assumptions that may
not be testable. This difference in the status of the different parameters is important
for understanding the interpretations made in this book.

We now formally define the causal effect of a treatment within the framework
of the potential outcome model of Rubin (1974). Yi(0) is defined as the potential
outcome for individual i if they are not treated, and Yi(1) as the potential outcome
if they are treated. In reality, for a given individual, only the treatment status Di ∈
{0, 1} is observed, as well as the realized outcome Yi defined by:

Yi := Yi(Di) = { Yi(0) ifDi = 0,
Yi(1) ifDi = 1.

The treatment effect for an individual i is then:

Δi = Yi(1) – Yi(0).

The fundamental problem of causal inference arises from the fact that, for an indi-
vidual i, one can only ever observe Yi(0) or Yi(1), and thus never the effect Δi
directly. This situation presents a missing variable problem, making the estimation
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of Δi unfeasible without additional assumptions. Therefore, we focus on making
inferences about different features of the treatment effect at the population level.

A first quantity of interest is the average treatment effect (ATE)

τ0 := E[Yi(1) – Yi(0)],

which represents the average impact of the intervention in the population. A sec-
ond usual parameter of interest is the average treatment effect on the treated (ATT),
which is defined as

τATT0 := E[Yi(1) – Yi(0)|Di = 1].

Finally, when we observe characteristics Xi, we may be interested in describing the
potential heterogeneity of the treatment effect with respect to these variables. In
fact, τ0 represents an average effect that could mask significant disparities across
the population. Subsequently, our attention shifts towards the conditional average
treatment effect (CATE), defined as the function:

τ : x↦ E [Yi(1) – Yi(0)|Xi = x].

The estimation of this parameter will be further developed in Chapter 8.

3.2 Randomized controlled trials

Randomized controlled trials (RCTs) are the simplest conceptual framework for
identifying causal effects, as well as the most reliable level of proof in terms of inter-
nal validity. In fact, Abadie and Cattaneo (2018) refer to them as the “gold standard.”
They consist of randomly assigning an individual to receive treatment (Di = 1) or
not receive treatment (Di =0). In this case, the group of untreated individuals con-
stitutes what is called the control group, which serves as the baseline for comparison.
The aim is to measure the effect of this treatment on an outcome variable. In doing
so, it is crucial to consider the counterfactual situation, the value of the outcome
variable that would have been observed if the treatment had not been administered.
For example, to determine the causal effect of a training program on employment
outcomes, we would want to compare the outcome of an individual after they have
undergone training to the outcome they would have obtained if they had not under-
gone training. Therefore, we seek to obtain a control group that is as similar as
possible to the treated individuals.

Random assignment to treatment thus helps to avoid the effects of selection into
treatment, which is the idea that individuals who have the most to gain from treat-
ment have incentives to enter the treatment group, biasing the comparison with the
group of untreated individuals, whodonot have such incentives. Evenwhen random
allocation is not feasible, the context of RCTs continues to serve as a foundational
framework for the development of more sophisticated identification strategies.
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We now develop simple methods and the statistical framework for estimating the
parameters mentioned in the previous section. Suppose we observe an i.i.d. sample
of pairs of random variables (Yi,Di), i = 1, . . . , n, and:

Assumption 3.1 (SUTVA).
Yi := Yi(Di).

Hypothesis 3.1 is known as the stable unit treatment value (SUTVA) assumption,
and assumes that the effect of the treatment on one individual does not affect
the outcome of the other individuals. This assumption may be questionable if, for
example, there are network or peer effects, more generally if there are externali-
ties (e.g., the impact of a vaccine). An alternative model would be to assume that
Yi = Yi(D1,…,Dn), i.e., an individual’s outcome depends on the treatment status of
other individuals. However, this model is generally too complex to be useful.

Assumption 3.2 (Random assignment).

(Yi(0), Yi(1)) ⊥⊥ Di.

Assumption 3.2 expresses the independence of treatment with respect to potential
outcomes, which is credible if and only if treatment is randomly assigned, without
reference to the individual’s potential outcome.

By comparing the average outcomes between the treated group and the control
group, we have:

E[Y |D = 1] – E[Y |D = 0]

= E[Y (1)|D = 1] – E[Y (0)|D = 0] (under SUTVA)

= E[Y (1)|D = 1] – E[Y (0)|D = 0] + E[Y (0)|D = 1] – E[Y (0)|D = 1]

= E[Y (1)|D = 1] – E[Y (0)|D = 1] + E[Y (0)|D = 1] – E[Y (0)|D = 0]  
=0, using assumption 3.2

= τ0, (3.1)

where the last line is obtained using Assumption 3.2, which implies the equality of
the average treatment on the treated (ATT) to the average treatment effect (ATE).
In this sense, it means that the group of treated individuals in the absence of treat-
ment would have been comparable to the group of untreated individuals. We can
then deduce the difference-in-means (DM) estimator, denoting by nd the number of
individuals in group d ∈ {0, 1}:

τ̂DM = 1
n1

∑
Di=1

Yi –
1
n0

∑
Di=0

Yi. (3.2)
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Using the central limit theorem and (3.1), we obtain that the estimator (3.2) is
asymptotically normal:

√n(̂τDM – τ0)
d→  (0, σ2

DM),

where σ2
DM := Var(Y (1))/P(D = 1) + Var(Y (0))/P(D = 0), and we can derive

confidence intervals on the ATE.

Remark 3.1 OLSestimationof the treatment effect

Assume that we observe (Yi,Di, Xi) satisfying the linear model

Yi = τ0Di + X ′
iβ + εi, E[εi|Di, Xi] = 0. (3.3)

Then we can estimate the average treatment effect using OLS of Yi on (Di, Xi), and the
estimator is asymptotically normal, under the standard OLS assumptions.

In fact, if agents are randomly assigned to two groups of equal size, even when themodel
is not linear inXi, usingOLScannot lead toanestimator that is less precise than theestimator
based on average differences, and is often even better (see Freedman, 2008; Lin, 2013). How-
ever, this gain relies on the linearity assumption of Model (3.3). As proven in (see Lin, 2013),
this improvement in term of precision also holds when the groups have different sizes, but
we regress Yi on Di, Xi, and the interactions between treatment Di and covariates Xi. The
other advantage of the latter interactive model is that it allows to describe heterogeneous
effects of treatment.

3.3 Conditional independence and thepropensity score

3.3.1 Baseline assumptions

The idealized framework of randomized experiments described above is often dif-
ficult to implement in practice. Moreover, it is often not desirable if the treatment is
costly and one wishes to estimate its impact while limiting its cost, for example by
excluding populations for which it is assumed a priori that the effect will be smaller.
Nevertheless, this framework can be extended to cases where the treatment is not
purely random but can be considered random once observable individual char-
acteristics are controlled for. Assume that we observe an i.i.d. sample (Yi,Di,Xi),
i = 1, . . . , n, where Xi is a vector of observable characteristics. The key assump-
tion is that once the observable individual characteristics Xi are controlled for, the
assignment to treatment is as good as random.
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Assumption 3.3 (Conditional independence or unconfoundedness).

(Yi(0), Yi(1)) ⊥⊥ Di |Xi

Assumption 3.3 of conditional independence or selection on observables, often
discussed in the economic literature, assumes that, conditional on these observ-
able variables, the treatment is independent of potential outcomes. Rosenbaum and
Rubin (1983) show that an important consequence of this assumption is that the
propensity score defined as:

p : x ∈  ↦ P(D = 1|X = x)

allows to reduce the dimension of the problem, since it satisfies:

(Yi(0), Yi(1)) ⊥⊥ Di | p(Xi). (3.4)

3.3.2 Two characterizations of the ATE

There are multiple ways to characterize the ATE. We focus here on two of the most
commonly used ones, i.e., using the inverse-propensity weighting (IPW)
Using the propensity score. A first characterization of the ATE uses inverse-

propensity weighting for estimation. The idea is to estimate the score p in a first
step using non-parametric regression p̂. Note that, when X is discrete and takes val-
ues xk, k = 1, . . . ,K, a natural estimator of p is p̂(x) = nx,1/nx when x ∈ {x1, . . . , xK},
with nx and nx,1 being respectively the number of observations and the number of
treated observations D = 1 such that X = x in the sample of size n. Then, we use:

τ̂IPW = 1
n

n
∑
i=1
[ DiYi
p̂(Xi)

– (1 – Di)Yi
1 – p̂(Xi)

] . (3.5)

Define τ∗IPW the oracle estimator which is obtained assuming the propensity score is
known:

τ∗IPW = 1
n

n
∑
i=1
[ DiYi
p(Xi)

– (1 – Di)Yi
1 – p(Xi)

] . (3.6)

The analysis of the asymptotic properties of τ̂IPW proceeds by decomposing

τ̂IPW – τ0 = τ̂IPW – τ∗IPW  
(A)

+ τ∗IPW – τ0  
(B)

.
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Notice that term (B) vanishes since τ∗IPW is unbiased:

E(τ∗IPW) = E [ DiYi
p(Xi)

– (1 – Di)Yi
1 – p(Xi)

]

= E [DiYi(1)
p(Xi)

– (1 – Di)Yi(0)
1 – p(Xi)

]

= E [E [DiYi(1)
p(Xi)

– (1 – Di)Yi(0)
1 – p(Xi)

|||p(Xi)]] (law of iterated expectations)

= E [Yi(1) – Yi(0)] (with Assumption 3.3).

Then, under the following overlap condition:

Assumption 3.4 (Overlap condition).

∃η > 0, such that, for all x ∈  , η ≤ p(x) ≤ 1 – η,

and assuming bounded outcome variables |Yi|≤M, we obtain a control in probabil-
ity for the distance to the oracle estimator (A):

|̂τIPW – τ∗IPW| = p (
M supx∈ |p̂(x) – p(x)|

η ) .

Thus, under the sufficient condition of having a convergent estimator in sup-norm
of the propensity score, supx∈ |p̂(x) – p(x)| →

n→∞
0, the estimator τ̂IPW is consistent.

Using difference between regression functions
A second characterization of the ATE is based on, for each x ∈  :

E [Yi(1) – Yi(0)|Xi = x]
= E [Yi(1)|Xi = x] – E [Yi(0)|Xi = x]
= E [Yi(1)|Xi = x,Di = 1] – E [Yi(0)|Xi = x,Di = 0] (using assumption 3.3)

= E [Yi|Xi = x,Di = 1] – E [Yi|Xi = x,Di = 0] (using assumption 3.1)

= μ1(x) – μ0(x),

where μj(x) = E [Yi|Xi = x,Di = j] for j = 1, 2, and thus

τ0 = E [μ1(Xi) – μ0(Xi)]. (3.7)

Oneway to obtain a consistent estimator of the ATEwith this characterizationwould
be to use a consistent non-parametric estimator μ̂( j) of μ( j) and then average over the
observations:
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τ̂Diff =
1
n

n
∑
i=1

(μ1(Xi) – μ0(Xi)). (3.8)

In these two contexts, the functions μ and p appear as nuisance parameters that
would need to be known in order to estimate the parameter of interest τ0. Using
separate machine learning estimators for μ1(·) and μ0(·), an estimator of τ(·) does
not necessitate the estimation of the propensity score. A challenge arises as biases in
the separate estimations of μ1(·) and μ0(·) can accumulate and result in significant
and unpredictable biases in the estimation of τ(·).

An estimator following the first approach, τ̂IPW, often exhibits higher variance in
contrast to a conditional mean regression estimator, τ̂Diff, attributed to the division
by the propensity score in (3.5) (see the interesting example in Section 3 of Powers
et al., 2017).

3.3.3 Efficient estimation of treatment effect

The augmented inverse propensity score (AIPW) estimator, defined by Robins et al.
(1994) andHahn (1998), is designed to correct the bias in (3.8) due to the estimation
of μ( j). It is given by

τ̂AIPW = 1
n

n
∑
i=1

μ1(Xi) – μ0(Xi) +
Di(Yi – μ1(Xi))

p(Xi)
– (1 – Di)(Yi – μ0(Xi))

1 – p(Xi)
. (3.9)

This AIPW estimator has two important properties:

1. It achieves the semi-parametric efficiency bound (Robins et al., 1994; Hahn,
1998), with

√n(̂τAIPW – τ0)
d→  (0, Var(τ(X)) + E [ σ20(X)

1 – p(X)] + E [σ
2
1(X)
p(X) ]) ,

where σ2j (x) = Var(Y ( j)|X = x) for j = 0, 1.
2. It is doubly robust, meaning that it is consistent either if the estimators μ̂( j) for

j = 0, 1 are consistent, or if p̂ is consistent.

3.4 Instrumental variables

3.4.1 Endogeneity and instrumental variables

We specialize here the presentation of the instrumental variablesmethod to the con-
text of the estimation of the treatment effect mentioned in the previous section.
We aim to generalize the approach of randomized experiments to so-called natural
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experiments, where the treatment D is not random and therefore not independent
from the potential outcomes. Consider a linear model allowing to estimate the effect
of the treatment D ∈ R (discrete or continuous, and of dimension 1 here) while
controlling for variables X ∈ Rpx (also generally includes the intercept):

Y =Dτ0 + X′β0 + ε, with E[ε] = 0, (3.10)

E[ε|D,X] = 0. (3.11)

In general, if we are outside the realm of RCTs or if the latter does not exactly adhere
to the previous theoretical framework, the exogeneity assumption E[Dε] = 0 may
not hold. While it is always possible to define quantities (τ̃0, β̃0, ε̃) such that

Y = Dτ̃0 + X ′β̃0 + ε̃,

with E[ε̃|D,X] = 0. Under the usual rank conditions, the ordinary least squares esti-
mator will estimate (τ̃0, β̃0), which generally differ from the true parameters (τ0, β0).
Here, Dτ̃0 + X ′β̃0 is the best linear predictor of Y on (D,X), but it is no longer the
causal effect.

In this context where E[εX] = 0 but not E[εD] = 0, a possible strategy is to
identify instrumental variables W = (Z′,X ′)′ ∈ Rp+px , where p is larger than the
number of endogenous variables D (here 1). An instrument is a variable that (i) is
correlated with the endogenous variable and (ii) is uncorrelated with the residu-
als. We define D∗ the best linear prediction of D using W, i.e. D∗ = W ′γ where
γ = argming∈Rp E [(Di –W ′

i g)2], and denote by W∗ = (D∗,X ′)′. More formally,
assume:

Assumption 3.5 (Rank condition). E[W∗(W∗)′] is non-singular.

Assumption 3.6 (Exogeneity). E[εW] = 0.

Under Assumptions (3.10), (3.5), and (3.6), the true parameters take the form:

(τ0, β′0)′ = E[W∗(W∗)′]–1E[W∗Y]. (3.12)

Lower levels conditions for Assumption (3.5), i.e., the relevance of the instruments
Z forD are thatE[WW ′] is non-singular and γ ≠ 0. The estimator obtained by taking
the empirical counterpart of (3.12) is the two-stage least squares (2SLS) estimator.
The 2SLS estimator can thus be obtained by the following two steps: (i) regress D
on the instrument Z and controls X, and then (ii) regress Y on the prediction of D
obtained from step (i) and controls X. When there is only one instrument Z and
without controls, we obtain in particular τ0 = Cov(Y,Z)/Cov(Z,D).

In practice, the researcher may have access to multiple instruments or may want
to consider transformations of the initial instrument A(W), since they also satisfy
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Assumption (3.6). Indeed, the moment condition E[ε|W] = 0, where W = (Z′,X ′)′,
implies a sequence of unconditional moment conditions E[εA(W)] = 0, indexed by
a vector of instruments A(W) such that E[A(W)2] < ∞. This raises the legitimate
question of choosing the function A(·) in order to minimize the asymptotic variance
of the GMM estimator of θ0 := (τ0, β′0)′.

While this choice may not affect the identification of the causal effect, it does
impact the precision of the 2SLS estimator. Therefore, we provide an overview of
the classical results on the problem of optimal instruments. For simplicity here, we
limit ourselves to the case of conditional homoscedasticity:

E [ε2|W] = σ2. (3.13)

3.4.2 The problem of optimal instruments

In this section, we assume that only D is endogenous and of dimension 1, and we
recall the results concerning the optimal choice of A(·) in the moment equation
E[εA(W)] = 0 such that E[A(W)2] < ∞ in order to obtain more precise estimates.
We denote S := (D,X′)′ ∈ Rp+1. We study the estimator of the generalized method
of moments (GMM) (see the reminders in Section 2.5), based on the moment
conditions:

M(θ0,A) := E [A(W) (Y – S′θ0)] = 0.

Using the properties of GMM and the notations of Section 2.5: ψ(U, θ0,A) :=
A(W) (Y – S′θ0), we obtain that the estimator θ̂n satisfies:

θ̂n = [1n
n
∑
i=1

A(Wi)S′i]
–1 1

n

n
∑
i=1

A(Wi)Yi

and converges in probability θ̂n
p⟶ θ0 (see Theorem 5.7 in Van der Vaart, 1998). It

is also asymptotically normal and we obtain:

√n (θ̂n – θ0)
d⟶  (0,G(A)–1Σ(θ0,A) (G(A)–1)′) , (3.14)

where G(A) = E [A(W)S′] and Σ(θ0,A) = E [ψ(U, θ0,A)ψ(U, θ0,A)′]. The optimal
form of Aminimizes the asymptotic variance in (3.14), as specified by Theorem 3.1
below.

Theorem 3.1. (Necessary condition for optimal instruments (Theorem 5.3 in Newey
and McFadden, 1994, p. 2166)) If an efficient choice A of A exists for the estimator
(2.13), then it must satisfy

G(A) = E [ψ(U, θ0,A)ψ (U, θ0,A)′] , for all A such that E [A(W)2] < ∞.
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This condition can be reformulated as follows:

E [A(W)S′] = E [A(W)(Y – S′θ0)2A(W)′].

Thus, using the law of iterated expectations, we obtain

E [A(W) (E [S′|W] – E [(Y – S′θ0)2
|||W]A(W)′)] = 0.

Using the assumption of homoscedasticity (3.13), which can be written here as

E[(Y – S′θ0)2|W] = σ2,

this last condition is satisfied when A(W) = E [S|W] /σ2. Being invariant to multipli-
cation by a constant matrix, the function A(W) = E [S|W]minimizes the asymptotic
variance, which becomes:

Λ∗ = σ2E [E [S|W]E [S|W]′]–1 . (3.15)

Λ∗ is the semi-parametric efficiency bound (see Chapter 25 in Van der Vaart, 1998).
Here, A(W) is called the optimal instrument. The optimal instrument is therefore the
regression function of S on W, w ↦ E [S|W = w]. Without further restrictions, it is
naturally an object of high dimension (see, e.g., Tsybakov, 2009). With few instru-
ments, Newey andMcFadden (1994) propose nonparametric estimators in the form
of series.

Remark 3.2 LATE

In the case of a binary treatment, some individuals assigned to the control group may still
receive treatment. Conversely, some individuals assigned to the treatment groupmay refuse
it. In these cases, we need to distinguish between the treatment allocation Z ∈ {0, 1} and
the treatment actually received D ∈ {0, 1}. While the allocation Z remains random, the
treatmentD generally no longer satisfies Assumption 3.2.

The approach, introduced by Imbens and Angrist (1994), consists of defining the potential
treatment D(Z), where for example D(0) = 1 if the individual was assigned to the control
group but managed to receive treatment. Assuming that the allocation is indeed random:

Z ⊥⊥ (Y (0), Y (1),D(0),D(1)) (3.16)

and under the assumption ofmonotonicity:

D(1) ≥ D(0) p.s., (3.17)

Continued
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Remark 3.2 Continued

we can identify the coefficient:

τC0 = E[Y (1) – Y (0)|D(1) – D(0) = 1]

= E[Y |Z = 1] – E[Y |Z = 0]
E[D|Z = 1] – E[D|Z = 0] . (3.18)

τC0 represents the causal effect of the treatment on the subpopulation of “compliers”
D(1)–D(0)=1,meaning thosewhobehave according to their allocationD=Z. The assump-
tion in Equation 3.17 implies that there are no “defiers,” i.e., individuals who would take the
treatment if theywere in the control groupbutwould not take it if theywere in the treatment
group. Since τC0 measures a causal effect on the subpopulation of compliers, it is referred to
as the “local average treatment effect” (LATE). It can also be identified as the coefficient of
the regression of Y onD using Z as an instrumental variable, as described in Section 3.4.

Remark 3.3 Nonparametric regression and IV

A first way to generalize the linear model (3.10) (see, e.g., Newey and Powell, 2003; Darolles
et al., 2011) is to consider

Y = φ(D, X) + ε, withE[ε|Z] = 0,

where the parameter of interest is the non-parametric function φ. The identification of this
function is obtained by taking the conditional expectation with respect to Z:

E[Y|Z] = E[φ(X)|Z] (3.19)

andassuming the completeness condition (see, e.g., DʼHaultfoeuille, 2011), namelyassuming
that for any measurable and integrable function g,

E[g(X)|Z] = 0 a.e ⟹ g(X) = 0 a.e

Equation (3.19) is amoment equation that reflects an inverse problem, where the associated
operator is the conditional expectation operator with respect to Z (see, e.g., Carrasco et al.,
2007; Darolles et al., 2011). Note that we can also relax the additivity assumption (see, e.g.,
Chernozhukov and Hansen, 2005).

The regularizationmethods classically used in this inverseproblems literature, suchas the
Tikhonovmethod, are equivalent to somemachine learningmethods introduced in Chapter
2, such as ridge regularization. They provide “dense” alternatives to the use of the sparsity
assumption and Lasso regularization, which are the focus of Chapters 4 and 6 (see also the
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discussion inChapter 11). Also in this context,machine learningmethods suchasdeepneural
networks can be used (Hartford et al., 2017) to estimate the regression functionE[Y|Z] and
the conditional distribution FX|Z and then solve the inverse problem (3.19).

3.5 Summary

Key concepts

Causal inference, randomized controlled trial (RCT), counterfactual situation, treatment
effect, average treatment effect (ATE), average treatment effect on the treated (ATT), hetero-
geneity of treatment effect, conditional average treatment effect (CATE), stable unit treat-
ment value (SUTVA), average treatment effect in differences estimator, propensity score,
inverse-propensity weighting (IPW), conditional independence or unconfoundedness, aug-
mented propensity score, optimal instrumental variable problem, local average treatment
effect (LATE).

Additional references

Angrist and Pischke (2009) and Imbens and Rubin (2015) are two reference books that
provide a comprehensive treatment of classical tools for causal inference in the potential
outcomes framework. Abadie andCattaneo (2018) offer a reviewof themost commonly used
methods.





PART II

HIGH-DIMENSION AND VARIABLE
SELECTION





Chapter 4
Post-selection inference

Model selection and sparsity among explanatory variables are traditional scientific
problems that hold particular importance in statistics and econometrics. These top-
ics have received increasing attention over the past two decades, as statisticians from
various fieldsmore frequently have access to high-dimensional datasets, i.e., datasets
that contain a large number of explanatory variables. Even with a moderately
sized dataset, high-dimensional problems can arise, for example when estimating
a non-parametric model using sieves. In practice, empirical economists often select
variables through trial and error, guided by their intuition, and report results under
the assumption that the selected model is the correct one. These results are sup-
ported by sensitivity analyses and additional robustness checks. However, empirical
works rarely fully acknowledged the variable selection step, although it is far from
innocuous. In particular, neglecting to account for it can lead to fallacious results.
Leamer (1983) was one of the first to sound the alarm. For a modern presentation,
see Leeb and Pötscher (2005) and, in the context of policy evaluation, Belloni et al.
(2014).

This chapter specifically deals with the case of selecting control variables. Section
4.1 illustrates, in a simplified case, the post-selection inference problem. Sections 4.2
and 4.3 present and study the Lasso estimator as it is often used as an automatic vari-
able selection tool. Section 4.4 builds on the intuition from Section 4.1 to illustrate
the regularization bias in a case closer to practical applications. Section 4.5 pro-
poses a particular solution in a fully linear framework, called the “double selection
method.”

This chapter is limited to the linear framework, but Chapter 5, and specifically
Section 5.1, presents the key theoretical concepts for handling post-machine learn-
ing inference, of which post-selection inference can be seen as a particular case.
Chapter 6 applies this theory to the instrumental variable model. And Chapter 7
covers further theoretical developments.

4.1 Thepost-selection inferenceproblem

Webegin by analyzing the two-step inferencemethod described in the introduction:
first selecting a model, followed by reporting the results of this model as if it were
the “true” model. This section is based on the work of Leeb and Pötscher (2005). We
consider here a very simple framework, where we assume that a maximum number
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of parameters are known, in order to illustrate, as clearly as possible, the intuition
found throughout this chapter.

4.1.1 Themodel

Assumption 4.1 (Possibly sparse Gaussian linear model). Consider the i.i.d. sequence
of random variables (Yi,Xi)i=1,…,n such that:

Yi = Xi,1τ0 + Xi,2β0 + εi,

where εi ~  (0, σ2), σ2 is known, Xi = (Xi,1,Xi,2) is of dimension two, εi ⊥⊥ Xi, and
E[XiX ′

i] is an non-singular matrix. We use the following notation for the elements
of the OLS covariance matrix:

[ σ
2
τ στ,β

στ,β σ2
β
] := σ2 [1n

n
∑
i=1

XiX ′
i]

–1

.

The most sparse true model is encoded byM0, defined as a random variable taking the
value R (“restricted”) if β0 = 0 and U (“unrestricted”) otherwise.

Assumption 4.1 defines a simple regression model with two variables, where the
effect of one variable is of interest, while the effect of the other is only a nuisance
parameter, i.e., it is not directly of interest, but it may be necessary to take it into
account to ensure the validity of the model, i.e., to validate the exogeneity condi-
tion. The reasoning in this section will be conditional on the covariates (Xi)1≤i≤n,
but we leave this dependence hidden. In particular, conditional on the covariates,
the unrestricted estimator is normally distributed:

√n [β̂(U) – β0
τ̂(U) – τ0

] ~  ([00] , [
σ2
β ρσβστ

ρσβστ σ2
τ
]) ,

where ρ := στ,β/στσβ is the correlation between the estimators of the two parameters.

Remark 4.1 Inclusionof control variables

The term “control variables” refers to the variables that are included in the regressionmodel
in order tomake the exogeneity assumption valid. In the terminology specific to causal infer-
ence and directed acyclic graphs, they are called “confounders.” A good control variable is
one that must both predict the variable of interest (relevance condition) and be correlated
with the main explanatory variable (confounding condition). If a control variable is omitted,
then the estimation is not valid since it suffers from an
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The opposite case of adding a variable that is not a control variable has an ambiguous
effect, depending on the condition it does not fulfill:

1. If a variable that does not satisfy the relevance condition is added, then the precision
of the estimation deteriorates since it decreases the variance of the main explanatory
variable, once purged of the effect of this superfluous variable.

2. If a variable is added that only satisfies the relevance condition, then the precision of
the estimation increases since it decreases the variance of the residual term without
decreasing the variance of the main explanatory variable.

4.1.2 Consistent model selection

The econometrician wants to perform inference on the parameter τ0 associated with
the effect of the variable Xi,1 and wonders whether to include Xi,2 in the regression
or not – a more parsimonious model potentially leads to a more precise estimation,
at the cost of an increased chance of being biased.

In the end, the econometrician reports the result of themodel M̂ that was selected
in a first step. Let τ̂(U) and β̂(U) be the OLS estimators in the unrestricted model
(Umodel), and let τ̂(R) and β̂(R) = 0 be the OLS estimators in the restricted model
(R model). The economist includes Xi,2 in the model if and only if the t-statistic is
sufficiently large:

Assumption 4.2 (Decision rule).

M̂ = { U if |√n β̂(U)
σβ | > cn

R otherwise,
(4.1)

where cn is such that cn → ∞ and cn/√n → 0 as n → ∞.

Note that the BIC criterion corresponds to cn = √log n and the AIC to cn = √2.
What are the asymptotic performances of this selection method?

Lemma 4.1 (Model selection consistency of rule 4.2). For M0 ∈ {U,R},

PM0 (M̂ = M0) → 1,

as n → ∞, where PM0 indicates the probability distribution of M̂ under the true model
M0.

The proofs of lemmas and theorems are given at the end of the chapter.
Since the probability of selecting the true model tends to one as the sample size

increases, Lemma 4.1 might suggest that a
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allows for inference to be performed “as usual,” i.e., that the model selection step
can be neglected since for sufficiently large n, the correct model is selected with
high probability. Indeed, in a “pointwise” sense, i.e., for a fixed and constant β0
value with respect to the sample size, this is true. However, for any given sample
size n, the probability of selecting the true model can be very low if β0 is close to
zero but not exactly zero. For example, suppose that β0 = δσβcn/√n with |δ| < 1
then: √nβ0/σβ = δcn and the probability of selecting the unrestricted model in the
proof of Lemma 4.1 is equal to 1 – Φ(cn(1 + δ)) + Φ((δ – 1)cn), which tends to zero
even if the true model is U because β0 ≠ 0! This quick analysis indicates that the
model selection procedure is not robust to deviations of the order of cn/√n from
the restricted model (β0 = 0). Statisticians say that, in this case, the model selection
procedure is not uniformly consistentwith respect to β0. For the econometrician, this
means that the standard inference procedure, i.e., the procedure that assumes that
the selected model is true, or that is conditional on the selected model being true,
and uses asymptotic normality to conduct tests and construct confidence intervals,
may require very large samples to be accurate. Moreover, this required sample size
depends on the unknown parameter β0 (see the numerical simulations of Leeb and
Pötscher, 2005).

4.1.3 Distribution of the post-selection estimator

Leeb and Pötscher (2005) analyze the distribution of the post-selection estimator τ̃,
defined by:

τ̃ := τ̂(M̂) = τ̂(R)1M̂ = R + τ̂(U)1M̂ =U. (4.2)
Despite the warning issued in the previous paragraph, is a convergent model selec-
tion procedure sufficient to alleviate concerns about the post-selection approach?
Indeed, using Lemma 4.1, it is tempting to think that τ̃ will be asymptotically dis-
tributed according to a Gaussian distribution and that standard inference applies
as well. However, we will show that the distribution of the finite sample of the post-
selection estimator can be very different from a standard Gaussian distribution. The
result presented here can be found in Leeb (2006) and is proven at the end of the
chapter.

Lemma 4.2 (Density of the post-selection estimator Leeb, 2006). The finite-distance
density (conditionally on (Xi)i=1,…,n) of√n(τ̃ – τ0) is given by:

f√n(τ̃–τ0)(x) = Δ (√nβ0

σβ
, cn)

1
στ√1 – ρ2

φ ( x
στ√1 – ρ2

+ ρ
√1 – ρ2

√nβ0

σβ
)

+ [1 – Δ (√nβ0/σβ + ρx/στ
√1 – ρ2

, cn
√1 – ρ2

)] 1
στ
φ ( xστ

) ,

where ρ = στ,β/στσβ and Δ(a, b) := Φ(a + b) – Φ(a – b).
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Figure 4.1 Finite-distance density of√n(τ̃ – τ0), ρ = .4
Note: Density of the post-selection estimator τ̃ for different values of β0/σβ, see the legend. The other
parameters are: cn = √log n, n = 100, στ = 1, and ρ = .4. See Lemma 4.2 for the mathematical formula.
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Figure 4.2 Finite-distance density of√n(τ̃ – τ0), ρ = .7
Note: See Figure 4.1. ρ = .7. This graph is the same as the one in Leeb and Pötscher (2005).

Lemma 4.2 gives the finite-distance density of the post-selection estimator. The least
we can say is that it is not Gaussian. There is an omitted variable bias which the
post-selection estimator can only overcome if the control variable has no effect on
the outcome (β0 = 0) or if there is no correlation between the explanatory vari-
ables (ρ = 0). Indeed, when ρ = 0, √n(τ̃ – τ0) ~  (0, σ2

τ); whereas when β0 = 0,
√n(τ̃ – τ0) ~  (0, σ2

τ/(1 – ρ2)) approximately, since Δ(0, cn) ≥ 1 – exp(–c2n/2) – the
probability of selecting the restricted model – is large. Figures 4.1 and 4.2 represent
the finite-distance density of the post-selection estimator for several values of β0/σβ
in the cases ρ = .4 and ρ = .7, respectively. Figure 4.1 shows a slight but significant
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distortion compared to a standard Gaussian distribution. The post-selection esti-
mator clearly exhibits bias. As the correlation between the two explanatory variables
intensifies (Figure 4.2), the density of the post-selection estimator becomes highly
non-Gaussian and even exhibits two modes. See Leeb and Pötscher (2005) for a
more in-depth discussion. Following this analysis, it is clear that inference proce-
dures (i.e., tests and confidence intervals) based on standard Gaussian quantiles can
generally give a distorted picture compared to the (true) distribution illustrated in
Figure 4.2.

4.2 Highdimension, sparsity, and the Lasso

A popular tool for automatically performing the variable selection step described in
the previous section is the Lasso of Tibshirani (1994). In this section, we temporarily
deviate from the post-selection inference problem to provide a proof of the Lasso
in the linear model based on strong assumptions. These assumptions can and are
relaxed in the Lasso literature, but they nevertheless allow us to simplify the proof.
We start with a Gaussian linear model.

Assumption 4.3 (Sparse gaussian linear model). Let (Yi,Xi)i=1,…,n a sequence of i.i.d.
random variables. The vector X is of dimension p. We assume that p is greater than
1 and can be much larger than n. We assume the following linear relationship:

Y = X ′β0 + ε,

where ε ~  (0, σ2), ε ⊥⊥ Xi , ‖β0‖0 ≤ s < p. Additionally, the explanatory variables
are almost surely bounded, max

i=1,…,n
‖Xi‖∞ ≤ M.

Remark 4.2 Sparsity

One element of assumption 4.3 requires special attention. The assumption of sparsity,
‖β0‖0 = ∑p

j=1 1 {βj ≠ 0} ≤ s, means that at most s components of β0 are different from
zero. This notion, i.e., the assumption that, although we consider many variables, only a
small number of elements of the parameter vector are different from zero, is an inherent
element in the literature on high dimensionality. This amounts to recasting the problem
of high dimensionality as a variable selection problem, where a good estimator should be
able to correctly select the relevant variables or estimate the quantities of interest consis-
tently at a rate close to √n, paying only a price dependent on s and p. Before proceeding,
we introduce the sparsity set, i.e., the set of indices corresponding to the non-zero elements
of β0: S0 := {j ∈ {1,… , p}, β0j ≠ 0}. A less restrictive concept was introduced by Belloni
et al. (2012). Called approximate sparsity, it assumes that the high-dimensional parameter
can be decomposed into a sparse component, which has many zero entries and a few large
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entries, andadensecomponent forwhichall entries are small anddecay to zerowithout ever
being exactly zero, see Assumption 6.2 in Chapter 6. Althoughmore general, this assumption
complicates the proof without helping to understand the intuition.

Let

L(β) = 1
n

n
∑
i=1
(Yi – X ′

iβ)
2

denote the mean squared error loss function. As in Section 2.3, the Lasso estimator
is defined as:

β̂ ∈ argmin
β∈Rp

L(β) + λn‖β‖1. (4.3)

The Lasso minimizes the sum of the empirical mean squared loss and a penalty or
regularization term λn‖β‖1. Note that the solution to (4.3) is not necessarily unique.
As the ℓ1 norm has a kink at zero, the resulting solution of the program, β̂, will be
sparse. The parameter λn defines the trade-off between fitting the data on one side
and sparsity on the other. Generally, the value of λn is chosen via the cross-validation
procedure described in Section 2.3.5. It has been shown that Lasso-type estima-
tors can provide a good approximation of parameters subject to a sparse structure,
whether they are finite or infinite dimensional. However, in the presence of a large-
dimensional β0 for which the sparsity assumption is not supposed to hold, using
the Lasso estimator is not a good idea. Thus, if for example, β0 is assumed to be
dense (i.e., many small entries but no real zeros), the use of ℓ2 regularization (Ridge
estimator) is more effective. For more information on the use of different types of
regularization, see Section 2.3.4 as well as Abadie and Kasy (2019).

The Lasso and related techniques for dealing with high dimension have led to a
vast literature since the seminal article of Tibshirani (1994). Bühlmann and Van de
Geer (2011) and Giraud (2014) are reference textbooks. Other key articles include,
for example, Candes and Tao (2007), Van de Geer (2008), Bickel et al. (2009).

To establish the convergence of the Lasso estimator, another ingredient is needed:
a restricted eigenvalue condition. Let

Σ̂ := 1
n

n
∑
i=1

XiX ′
i

the empirical Gram matrix. In a high-dimensional framework, we are particularly
concerned with cases where the number of covariates is greater than the sample size
(p > n), as then Σ̂ is degenerate in the sense that it is not full rank:

min
δ∈Rp

δ ≠ 0

δ′Σ̂δ
‖δ‖22

= 0.
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In this case, least squares estimators cannot be computed. This is why a restricted
eigenvalue assumption is necessary: all square sub-matrices contained in the empir-
ical Grammatrix of dimension less than or equal to smust have a positive minimum
eigenvalue. More precisely: for a non-empty subset S ⊂ {1,…, p} and α > 0, we
define the set:

[S, α] := {v ∈ Rp : ‖vSC‖1 ≤ α‖vS‖1, v ≠ 0} (4.4)

Assumption 4.4 (Restricted eigenvalue). The empirical Gram matrix Σ̂ satisfies:

κ2
α(Σ̂) := min

S⊂{1,…,p}
|S|≤s

min
δ∈[S,α]

δ′Σ̂δ
‖δS‖22

> 0.

This condition appears and is discussed in particular in Bickel et al. (2009) and
Rudelson and Zhou (2013). We make this assumption directly on the empirical
Grammatrix, instead of on the populationGrammatrixE[XX ′], in order to simplify
the proof. For a probabilistic link between population and empirical Grammatrices
under fairly weak conditions, see, e.g., Oliveira (2013). Conditions that serve the
same purpose as restricted eigenvalue conditions have been used before, notably
the compatibility condition, the coherence condition, and the restricted isometry
condition, see for example Bühlmann and Van de Geer (2011, p. 106).

4.3 Theoretical elements on the Lasso

This section provides a simple proof of the consistency of the Lasso and introduces
the post-Lasso estimator.

Theorem 4.1 (Consistency in ℓ1 norm of Lasso) Under Assumption 4.3 and a
restricted eigenvalue condition 4.4 with [S0, 3], the Lasso estimator defined in
4.3 with a regularization parameter λn = (4σM/α)√2 log(2p)/n, where α ∈]0, 1[,
satisfies, with a probability greater than 1 – α:

‖β̂ – β0‖1 ≤ 42σM
ακ2

3(Σ̂)√
2s2 log(2p)

n . (4.5)

The main insight from Theorem 4.1 is that the Lasso is consistent in ℓ1 norm to the
true value β0 at a rate of s√log(p)/n. This rate should be compared to the rate of least
squares estimator under full knowledge of the sparsity model, which is s/√n. The
conclusion is that there is a price to pay for our ignorance, expressed by the term
√log(p). This rate is called fast in comparison to a slower rate that exists without
Assumption 4.4.

By adding a modified version of Assumption 4.4, an ℓ2 rate can be obtained:
‖β0 – β̂‖2 ≲ √s log(p)/n. The prediction error (i.e. ‖ ̂
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discussed in the literature, see e.g., Bickel et al. (2009), but is of less interest in this
book focused on inference.

Furthermore, note that the Lasso is not asymptotically Gaussian: the event β̂j = 0
has a non-zero probability of occurring. Therefore, it is not possible to construct
confidence intervals for β0 using the usual method (i.e., Gaussian, asymptotic).

Remark 4.3: Thepost-Lasso estimator

Before proceeding, it is worth mentioning the post-Lasso estimator, an estimator related to
the Lasso that has been notably studied by Belloni and Chernozhukov (2011) in the book by
Alquier et al. (2011) and by Belloni and Chernozhukov (2013). It is a two-stage estimator in
which a second stage is added to the Lasso procedure in order to eliminate the bias arising
from the fact that ℓ1 penalization pulls all coefficients towards zero, including those that
are not zero (shrinkage bias). This second stage consists of computing the least squares
estimator using only the covariates associated with a nonzero coefficient in the Lasso stage.
More precisely, the procedure is as follows:

1. Compute the Lasso estimator as in Equation (4.3), and let Ŝ be the set of non-zero
Lasso coefficients.

2. Compute the least squares estimator in a model including only the covariates
corresponding to the non-zero coefficients above:

β̂PL = argmin
β∈Rp ,β Ŝ C=0

L(β)

The performance is comparable to that of the Lasso in theory, although the bias appears to
be smaller in empirical applications since the induced shrinkage of the nonzero coefficients
is removed.We reiterate one of the lessons from this chapter: the post-Lasso estimator is still
not asymptotically normal as it is subject to thepost-selection inferenceproblemhighlighted
by Leeb and Pötscher (2005) in Section 4.1.

4.4 Regularizationbias

In this section, we discuss the regularization bias which is an omitted variable bias
arising from the same mechanism as described more simply in Section 4.1.

4.4.1 Selection and estimation cannot be optimally done at the
same time

The previous section focused on defining and understanding the Lasso esti-
mator. Due to the sparsity property of the
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Chernozhukov, 2013, show that ‖β̂‖0 ≲ s) and the natural appeal of the post-Lasso
estimator, it is easy to place excessive confidence in the Lasso. Indeed, one might
think that the Lasso can both serve as a device for recovering the support of β0
and accurately or rapidly estimating this same quantity. That is, both selecting
the right variables and estimating their associated coefficients accurately. However,
Yang (2005) shows that for a model selection procedure to be convergent, it must
behave sub-optimally in estimating the regression function and vice versa. In fact,
the condition on the penalty parameter λn in Zhao and Yu (2006) is very different
fromour requirement of λn = 4σM√2 log(2p)/n/α in Theorem 4.1. Themoral of the
story is that even when using the Lasso estimator, selecting relevant covariates and
accurately estimating their effects are two objectives that cannot be pursued simul-
taneously. Furthermore, the warnings issued in Section 4.1 also apply to the Lasso:
replacing Assumption 4.2 with Lasso selection does not overcome the problem of
post-selection inference.

In the presence of a high-dimensional parameter to estimate, the econometric lit-
erature has chosen to pursue a high-quality estimation of β0. Indeed, since most
economic applications deal with a specific causal question like “what is the effect of
A on B?” the identity of relevant regressors matters less than the accurate estimation
of certain nuisance parameters: think, for example, of estimating a control function
or the first stage of an instrumental variable regression.

But even when focusing solely on accurately estimating β0, the Lasso is not suf-
ficient. Indeed, high-dimensional statistics pose a specific challenge in that p, the
number of variables, is not negligible compared to the sample size. In other words,
if we were to assume that p remains constant with respect to n as n → ∞, the problem
could be reduced to a low-dimensional problem where n >> p. Thus, to adequately
tackle the problem, we must adopt a framework that assumes p → ∞ as n → ∞. We
will see that, within this high-dimensional framework, there exists an asymptotic
bias that we will call a regularization bias.

4.4.2 The bias of the naive “plug-in” estimator

Assumption 4.5 (Linear model with controls). Consider the i.i.d. sequence of random
variables (Yi,Di,Xi)i=1,…,n such that, omitting the index i:

Y = Dτ0 + X ′β0 + ε,

with ε such that E[ε] = 0, E[ε2] = σ2 < ∞, and E[ε|D,X] = 0. D ∈ {0, 1}. X is
of dimension p > 1. We allow p to be much larger than n and to grow with n. We
denote by μd := E[X |D = d] for d ∈ {0, 1} and π0 := E[Di] ≠ 0.

Suppose the econometrician wants to estimate the treatment effect τ0 of D on Y
in the model 4.5 above, while β0 is simply a nuisance parameter. In this part as well
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as in the rest of the chapter, we assume that the random variable D is binary, but
the stated results also apply in the case of a real-valued variable. In the presence of
a high-dimensional set of controls Xi, a naive post-selection procedure (e.g., Belloni
et al., 2014, [p. 36]) follows two steps:

1. (Selection) Compute the Lasso estimator of Y onD and X, forcingD to remain
in the model by excluding τ from the penalty part in the Lasso, Equation (4.3).
Obtain β̂L. Exclude all elements of X that correspond to a null coefficient in β̂L,

2. (Estimation) Compute the OLS estimator of Y on D and the set of selected
elements of X to obtain the post-selection estimator τ̂.

We denote β̂ the corresponding estimator of β0 obtained in step 2. We note that for
j ∈ {1,…, p}, if β̂Lj = 0 then β̂j = 0. We also denote π̂ := n–1∑n

i=1 Di.

τ̂ :=
1
n ∑

n
i=1 Di(Yi – X ′

i β̂)
π̂ = 1

n1
∑
Di=1

(Yi – X ′
i β̂),

where nd := ∑n
i=1 1 {Di = d}, d ∈ {0, 1} is a random quantity.

Lemma 4.3 (Regularization bias of τ̂). Under Assumption 4.5, if μ1 ≠ 0 then: √n|̂τ –
τ0|→∞.

Remark 4.4: Regularizationbias

Lemma 4.3 is a disappointing result: in the high-dimensional case, the naive “plug-in”
strategy does not work. This is due to two ingredients: μ1 ≠ 0 and p → ∞. If we were in a
low-dimensional case and had, for example, an OLS estimator for β0, √n(β0 – β̂) would
be asymptotically normal and the problem would not exist. It should be noted that in this
low-dimensional case, there is no selection step. What are the limitations of the approach
introduced in this section? It is a single-equation procedure. Recall that the selection step
only uses the outcome equation, meaning that elements of X tend to be selected if they cor-
respond to a large value in the coefficientβ0. Consequently, this procedure tends to overlook
variables that have amoderate effect onYbut a significant effect onD, thus creating anomit-
ted variable bias in the estimator of τ0. As expressed by Belloni et al. (2014): “Intuitively, any
such variable has a moderate direct effect on the outcome, which will be incorrectly misat-
tributed to the effect of the treatment when this variable is strongly related to the treatment
and the variable is not included in the regression.” In this case, the regularization bias result-
ing from non-orthogonal procedures that use machine learning tools such as Lasso in a first
step is referred to as “regularization bias.”

Now, let’s focus on a particular case that works. While this case is highly specific,
it serves as a focal point for identifying underlying issues. For this, we will make
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two assumptions. The first one limits the growth rate of p. It is technical but trivial.
The second assumption is probabilistic in nature and provides intuition for more
general results in the following section.

Assumption 4.6 (Growth condition).

s log p
√n

→ 0.

Assumption 4.7 (Balanced design). Let’s assume that:
1. μ1 = E[X |D = 1] = 0,
2. Concentration bound:

‖
‖
‖

1
√n

n
∑
i=1

DiXi
‖
‖
‖∞

≲ √log p. (4.6)

Assumption 4.6 aims to restrict the size of p in relation to the sample size. The
second part of Assumption 4.7, which allows for control over the maximum ele-
ments of a random vector based on its dimension, is quite technical but can be
proven under lower-level assumptions such as normality or sub-gaussianity of X
and the application of Lemma 4.6, recalling that E[DX] = 0 under the first part of
Assumption 4.7.

Lemma 4.4 (A favorable case). Under Assumptions 4.5, 4.6, and 4.7:

√n (̂τ – τ0)
d⟶  (0, σ

2

π0
) .

We note that Assumption 4.7 (1) implies:

E [∂√n(̂τ – τ0)
∂(β̂ – β0)

] = –E [n
–1/2

π̂

n
∑
i=1

DiXi] ≈ 0.

Under this assumption, the estimator τ̂ is first-order insensitive to small deviations
around the true value β0. This is what we will exploit in the following section.

4.5 Thedouble selectionmethod

Remember our estimation strategy for model 4.5: the idea was to select the elements
of X related to Y in a first step, and then to regress Y on D and the selected elements
of X in this first step. Generally, this strategy is subject to a bias. Let’s see how we can
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eliminate it. Omitting the individual index, assume that the equation determining
the treatment is given by:

D = X ′δ0 + ξ,

where E[ξ|X] = 0 and ξ ⊥⊥ ε. We denote η := (β, δ)′, which we will now refer to as
the nuisance parameter. We will show that the following moment condition:

E [ψ(Z, τ0, η0)] := E[(Y – Dτ0 – X ′β0)(D – X ′δ0)] = 0, (4.7)

is insensitive to small deviations around the true values of the nuisance parameters –
we will say in Section 5.1 that this condition is orthogonal in the Neyman sense,
or that it satisfies Equation 5.1 (Chapter 5) – and therefore allows us to obtain an
estimator of τ0 with desirable properties. ψ is a known function depending on the
observables (the data) Z := (Y,D,X ), the parameter of interest τ0, and the nuisance
parameter η0 = (β0, δ0)′. For more details, the reader is referred to Example 2.1 in
Chernozhukov et al. (2018)which deals with the broader framework underlying this
choice. Let’s first notice that:

∂ηψ(Z, τ, η) = [∂βψ(Z, τ, η)∂δψ(Z, τ, η)
] = [ –(D – X ′δ)X

–(Y – Dτ – X ′β)X].

In Assumption 4.5, β0 was implicitly defined by the orthogonality condition, i.e.,
normal equations, or the theoretical first order conditions of the least squares
program (see Section 2.1 for a refresher):

E [(Y – Dτ0 – X ′β0)X] = E [ε X] = 0.

According to the orthogonality condition in the treatment equation above, δ0 is such
that:

E [(D – X ′δ0)X] = E [ξX] = 0. (4.8)

It can be observed that we have E∂ηψ(Z, τ0, η0) = 0, which will be explained in
Section 5.1. Equation (4.7) is reminiscent of the Frish–Waugh–Lovell theorem:

E[( Y – Dτ0 – X ′β0  
Residual from

the outcome regression

)( D – X ′δ0
Residual from

the treatment regression

)] = E[ξε] = 0,

or more clearly, thanks to Equation (4.8):

E[(Y – X ′β0 – (D – X ′δ0)τ0)  
Residual from

the outcome regression

(D – X ′δ0)  
Residual from

the treatment regression

] = 0,
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which is the orthogonality condition in a problem where Y is regressed on the
residual of the treatment regression and X. We can also see τ0 as the following
parameter:

τ0 = Cov[D – X ′δ0, Y – X ′β0]
E[(D – X ′δ0)2]

. (4.9)

τ0 is the coefficient of the regression of the residual from the regression of Y on X on
the residual from the regression of D on X.

Remark 4.5: Double selectionmethod

This observation gives rise to the double selection method of Belloni et al. (2014) or the
double machine learning estimator of Chernozhukov et al. (2017):

1. (Selection on the treatment) RegressD on X using Lasso to obtain δ̂L. We define
ŜD := {j = 1,…, p, δ̂Lj ≠ 0} the set of selected variables,

2. (Selection on the outcome) Regress Y on X using Lasso to obtain β̂L. We define
ŜY := {j = 1,…, p, β̂Lj ≠ 0},̓

3. (Estimation) Finish by regressing Y onD and the ŝ = |̂SD ∪ ŜY| elements of X that
correspond to the indices j ∈ ŜD ∪ ŜY, using the OLS.

Note that in the first two steps, we can use either a Lasso or a post-Lasso. We define the
post-double selection estimators β̂ and δ̂ as follows:

β̂ = argmin
β:βj = 0,∀j∉ ŜD∪ŜY

n
∑
i = 1

(Yi – Diτ̂ – X ′
iβ)2, (4.10)

δ̂ = argmin
δ:δj = 0,∀j∉ ŜD∪ŜY

n
∑
i = 1

(Di – X ′
i δ)2. (4.11)

Based on Equation (4.7), the post-double selection estimator τ̌ has the following explicit
form:

τ̌ =
n–1∑n

i=1(Yi – X ′
i β̂)(Di – X ′

i δ̂)
n–1∑n

i=1 Di(Di – X ′
i δ̂)

. (4.12)

In relation to the previous paragraph, the third step may be surprising since we
regress Y on D and the union of the selected X instead of regressing Y – X ′β̂L on
D – X ′δ̂L. Using the Frisch-Waugh–Lovell theorem (Theorem 4.2 in the appendix),
we can show that this third step is equivalent to regressing the residuals of the
equation of Y including the selected X (during the first two steps) on the residu-
als of the equation of D on the selected X (during the first two steps). Conversely,
estimating τ0 directly through (4.9) is equivalent to
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equation of Y on the selected X (only during the second step) on the residuals of
the equation of D on the selected X (only during the first step). Therefore, they are
not rigorously the same estimator. However, these two approaches often yield very
close numerical results, given that the X that were not selected in one of the two steps
are expected to have a quasi-undetectable effect in these regressions. The numerical
difference may also come from the difference between the Lasso estimator and the
post-Lasso estimator, if a Lasso rather than a post-Lasso is used in steps 1 and 2.

Belloni et al. (2014) show that the estimator τ̌ is asymptotically Gaussian under
relatively weak assumptions:

√n (τ̌ – τ0)
d⟶  (0, σ2

τ),

with σ2
τ = E[ξ2i ε2i ]/E[ξ2i ]2, which can be consistently estimated by:

σ̂2
τ = [1n

n
∑
i=1

ξ̂2i ]
–2 1

n – ŝ – 1

n
∑
i=1

ξ̂2i ε̂2i ,

with ε̂i = Yi – τ̂Di – X ′
i β̂, ξ̂i = Di – X ′

i δ̂, and the post-double selection estimators
defined in (4.10) and (4.11). Note that this result is a special case of the result given
by Theorem 5.1 that we will see in the next chapter.

Remark 4.6: Post-selection inference

We note that the selection procedure advocated here is based on a two-equation approach.
The intuition behind this result is explained in Section 4.4 on regularization bias: by selecting
the elements of X in relation to bothD and Y, it does notmiss any confounding factor as was
the case with the more naive approach, based on a single equation. This result is important
because it allows for tests and confidence intervals on τ0. Thus, for example, a two-sided
confidence interval of asymptotic level 1 – α is given by:

[τ̌ ± Φ–1 (1 – α
2 )

σ̂τ
√n

] .

4.6 Empirical application: the effect of educationonwage

In L’Hour (2020), we applied the concepts described earlier to quantify the impact of
education on earnings using data from the French Enquête Emploi – we reproduce
this application without modification. The four quarters of the years 2017, 2018,
and 2019 from the employment survey are used, which represents a total of 162,254
observations.
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Education level is measured by a categorical variable with sixteen modalities. We
aim to estimate a linear model where the dependent variable is the logarithm of
monthly salary, and the explanatory variables are composed of education level in
binary variables (15 variables in total) and other control variables. We consider a
total of 393 other control variables, among which are usual determinants of salary
such as number of hours worked, individual’s age, as well as a large number of
socio-demographic and geographic variables (e.g., gender, social origin, marital
status, nationality, number of children). When appropriate, we also consider rel-
evant transformations of these variables (e.g., square, cross-product). Finally, we
automatically remove variables that generate multicollinearity.

In the present case, we have 15 parameters of interest, i.e., one for each edu-
cation level minus the baseline level (no education). We could directly apply the
double selection method by replicating 15 times the step 1 described in Section
4.5, which consists in estimating a Lasso regression of the variable of interest on
the control variables. However, we prefer to estimate a single stacked regression
using a group-Lasso estimator, described in Section 2.3.4. Indeed, given that each
binary variable represents a different education level, we can a priori think that
the main determinants are shared and therefore the sparsity pattern is the same
for each equation. The group-Lasso approach allows combining information across
each equation to achieve amore accurate variable selection. This is especially impor-
tant as an approach where each education level is separately analyzed is likely to fail
since some education modalities are very rare in the population (less than 2%). The
methodology followed to adapt the double selection method to a framework where
the parameter of interest is multi-dimensional, including the use of group-Lasso, is
described in the appendix of L’Hour (2020).

Figure 4.3 presents the estimates from two different models: (i) the complete
model including the 393 control variables estimated by OLS (in black), (ii) the
model estimated by double selection (in gray). The first step of double selection,
which consists of selecting the control variables related to the logarithm of wages,
selects 71 variables, while the second step, which consists of selecting the control
variables related to the level of education via Group-Lasso, selects 68 variables. In
total, 105 unique control variables are selected. The level of penalization was fixed
theoretically, proportionally to√log p/nwhere p denotes the number of parameters
in the model, which is 393 + 1 in the first step and 15 × (393 + 1) in the second.
The confidence intervals have a level of 95% and are constructed using robust stan-
dard errors based on clustering at the household level. We can first observe that the
double selectionmethod leads to an estimator that is muchmore precise than in the
complete model. Furthermore, the estimated effects are generally of smaller mag-
nitude, so that some confidence intervals for the two models have no intersection,
and we distinguish four groups of diplomas: (i) no diploma/up to middle school
diplomawhich constitutes the baseline, (ii) high school diploma,which corresponds
to a wage difference of +15% compared to the baseline, (iii) from a two-year college



Post-selection inference 77

0.75

0.50

M
ea

su
re

d 
im

pa
ct

 o
n 

lo
g 

m
on

th
ly

 ea
rn

in
gs

0.25

0.00

Pr
im

ar
y e

du
ca

tio
n

M
id

dl
e s

ch
oo

l

Vo
ca

tio
na

l t
ra

in
in

g

ce
rti

fic
ate

s (
BE

P, 
CAP

)

Te
ch

ni
ca

l c
er

tifi
ca

te

Pr
of

es
sio

na
l b

ec
ca

lau
re

ate

Te
ch

no
log

ica
l b

ac
ca

lau
re

ate

Gen
er

al 
ba

cc
ala

ur
ea

te

Pa
ra

m
ed

ica
l /

 so
cia

l

ce
rti

fic
ate

s (
ba

c+
2)

Ad
va

nc
ed

 te
ch

ni
cia

n

ce
rti

fic
ate

s (
DUT, 

BT
S)

 

Gen
er

al 
un

ive
rsi

ty 
stu

di
es

(b
ac

+2
)

Ba
ch

elo
r’s

 de
gr

ee
M

as
ter

’s 1
st 

ye
ar

En
gin

ee
rin

g s
ch

oo
ls,

bu
sin

es
s s

ch
oo

ls,
 ot

he
r

Gra
du

ate
 an

d p
os

t-

gr
ad

ua
te 

de
gr

ee
s

Oth
er

 di
pl

om
as

 (b
ac

+2
)

Figure 4.3 Wage effect of education level
Note: figure from L̓ Hour (2020). Impact measured and 95% asymptotic confidence intervals for each
education level on the logarithm of monthly salary, with household-clustered standard errors. The black
interval is obtained by estimating the complete model, without any variable selection. The gray interval is
obtained through double selection.

degree to a master’s degree, which corresponds to a wage difference of between 25
and 35%, and finally, (iv) master’s degree, graduate school, and beyond, which are
associated with a wage difference of +50%.

4.7 Summary

Key concepts

Nuisance parameter, parameter of interest, post-selection inference, sparsity, Lasso/post-
Lasso estimator, regularization bias, plug-in estimator, double selection method.
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Additional references

The Lasso regression is detailed in the book by Hastie et al. (2009). Belloni et al. (2014) is
arguably the most accessible econometric reference that covers the core of this chapter.

Codeanddata

hdm is an R package developed by Victor Chernozhukov, Christian Hansen, and Martin
Spindler, available at cran.r-project.org/web/packages/hdm/index.html, which allows for
the practical implementation of double selection. github.com/demirermert/MLInference is
also an interesting resource. A Stata package, LASSOPACK, has also been developed more
recently, available at ideas.repec.org/c/boc/bocode/s458458.html.

Questions

1. What is the Lasso estimator? What is the key assumption for the Lasso to be
consistent?

2. What is the convergence rate of the Lasso? When does this pose a problem?
3. Explain why estimating a nuisance parameter using a Lasso estimator can be

problematic when we are interested in a specific parameter of interest.
4. What is the regularization bias? Can it exist in the case of small dimension (p < n)?
5. Briefly explain the double selection method and the problem it solves.
6. What problem is raised by Leeb and Potscher? Does the result of Theorem 5.1

(asymptotic normality of the immunized estimator) contradict the analysis of Leeb
and Potscher? Why?

4.8 Proofs andadditional results

4.8.1 Proof of the main results

Proof of Lemma 4.1 Considering the selection rule (4.2) and the assumption of
Gaussian distribution in the model (4.1):

P (M̂ = R) = P (|√nβ̂(U)/σβ| ≤ cn)

= P (–cn –√nβ0/σβ ≤ √n(β̂(U) – β0)/σβ ≤ cn –√nβ0/σβ)

http://cran.r-project.org/web/packages/hdm/index.html
http://github.com/demirermert/MLInference
http://ideas.repec.org/c/boc/bocode/s458458.html
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= Φ (cn –√nβ0/σβ) – Φ (–cn –√nβ0/σβ)

= Φ (√nβ0/σβ + cn) – Φ (√nβ0/σβ – cn)

= Δ (√nβ0/σβ, cn),

with Δ(a, b) := Φ(a + b) – Φ(a – b) and the fourth equality uses the symmetry of
the Gaussian distribution, Φ(–x) = 1 – Φ(x). According to this equation and the
restrictions on cn, the probability of the event M̂ = R tends to one if β0 = 0 (M0 = R)
and tends to zero otherwise (M0 = U). □

Proof of Lemma 4.2 Start from Equation (4.2):

P (x ≤ √n(τ̃ – τ0) ≤ x + dx)

= P (x ≤ √n(̂τ(R) – τ0) ≤ x + dx | M̂ = R)P (M̂ = R)

+ P (x ≤ √n(̂τ(U) – τ0) ≤ x + dx | M̂ = U)P (M̂ = U).

Let’s consider the first term of the sum. According to Lemma 4.5, for any real
number x, we have:

P (x ≤ √n(̂τ(R) – τ0) ≤ x + dx | M̂ = R) = P (x ≤ √n(̂τ(R) – τ0) ≤ x + dx) .

Thus, as dx → 0, the first part of the sum (multiplied by 1/dx) is the probability of
selecting the model R multiplied by the density of √n(̂τ(R) – τ0). The probability
of selecting the model R is P (M̂ = R) = Δ (√nβ0/σβ, cn). Before continuing, let’s
note the relationship between the moments of Xi and those of the OLS estimators in
model U, according to Assumption 4.1:

[1n
n
∑
i=1

XiX ′
i] = σ2

σ2
βσ2

τ(1 – ρ2) [
σ2
β –ρσβστ

–ρσβστ σ2
τ

] .

To compute the density of√n(̂τ(R)– τ0), we use the usual formula for OLS in which
we substitute Yi by the model in Assumption 4.1:

√n(̂τ(R) – τ0) = –√nβ0ρ
στ
σβ

+√nσ
2
τ

σ2 (1 – ρ2) (1n
n
∑
i=1

Xi,1εi).

Since the εi are i.i.d. Gaussian and conditionally on Xi, we obtain:

√n(̂τ(R) – τ0) ~  (–√nβ0ρ
στ
σβ

, σ2
τ(1 – ρ2)).
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The bias –√nβ0ρστ/σβ corresponds to the usual omitted variable bias (OVB)
Angrist and Pischke (2009, p. 59):

–√nβ0
ρστσβ
σ2β

= √nβ0
Cov(Xi,1,Xi,2)

V(Xi,1)
.

Now let’s focus on the second part of the sum and swap the order of the events:

P (x ≤ √n(̂τ(U) – τ0) ≤ x + dx | M̂ = U)P (M̂ = U) =

P (M̂ = U | x ≤ √n(̂τ(U) – τ0) ≤ x + dx)P (x ≤ √n(̂τ(U) – τ0) ≤ x + dx).

Let’s recall that

[√n(β̂(U) – β0)
√n(̂τ(U) – τ0)

] ~  ([00] , [
σ2
β ρσβστ

ρσβστ σ2
τ
]).

Therefore, we directly have

P (x ≤ √n(̂τ(U) – τ0) ≤ x + dx)
dx → 1

στ
φ ( xστ

),

as dx → 0. Due to the properties of Gaussian vectors, we obtain:

√n(β̂(U) – β0) | √n(̂τ(U) – τ0) ~  (ρσβστ
√n(̂τ(U) – τ0), σ2β(1 – ρ2)).

Now let’s calculate P(|√nβ̂(U)/σβ| > cn|√n(̂τ(U) – τ0) = x). On one hand:

P (√nβ̂(U)
σβ

> cn
|||√n(̂τ(U) – τ0) = x)

= Φ ( 1
√1 – ρ2

(√nβ0

σβ
+ ρ x

στ
– cn)).

On the other hand:

P (√nβ̂(U)
σβ

< –cn
|||√n(̂τ(U) – τ0) = x)

= 1 – Φ( 1
√1 – ρ2

(√nβ0

σβ
+ ρ x

στ
+ cn)),

which gives the intended result. □
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Proof of Theorem 4.1 Since β̂ is a solution of the minimization program, we
necessarily have:

L(β̂) + λn‖β̂‖1 ≤ L(β0) + λn‖β0‖1. (4.13)

Step 1: differences in loss functions. We decompose the difference between the
two loss functions into two elements and replace Yi:

L(β̂) – L(β0) = 1
n

n
∑
i=1
(Yi – X ′

i β̂)
2
– (Yi – X ′

iβ0)2

= 1
n

n
∑
i=1
(X ′

i(β0 – β̂) + εi)
2
– ε2i

= (β̂ – β0)′ [
1
n

n
∑
i=1

XiX ′
i]

  
=Σ̂

(β̂ – β0) + 2(β̂ – β0)′ [
1
n

n
∑
i=1

εiXi].

Therefore, from Equation (4.13), we obtain:

(β̂ – β0)′Σ̂(β̂ – β0) ≤ λn (‖β0‖1 – ‖β̂‖1) – 2(β̂ – β0)′ [
1
n

n
∑
i=1

εiXi]

≤ λn (‖β0‖1 – ‖β̂‖1) + 2‖β̂ – β0‖1‖
1
n

n
∑
i=1

εiXi‖∞,

Step 2: concentration inequality. It is time to apply the concentration inequality
from Lemma 4.6 to ‖ 1

n ∑
n
i=1 εiXi‖∞. Using Markov’s inequality:

P (max
j=1,…,p

|
|
|
1
n

n
∑
i=1

εiXij
|
|
|
≥ λn

4
|||X1,…,Xn)

≤
4E (max

j=1,…,p
|| 1n ∑

n
i=1 εiXij||

|||X1,…,Xn)

λn

≤ 4σM
√n

√2 log(2p)
λn

≤ α,

since λn = 4σM
α √ 2 log(2p)

n . Since the right-hand side is non-probabilistic, we have:

P (max
j=1,…,p

|
|
|
1
n

n
∑
i=1

εiXij
|
|
|
≥ λn

4 ) ≤ α.
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During the event {max
j=1,…,p

|| 2n ∑
n
i=1 εiXij|| < λn

2 }, which occurs with a probability

greater than 1 – α:

(β̂ – β0)′Σ̂(β̂ – β0) ≤ λn (‖β0‖1 – ‖β̂‖1) +
λn
2 ‖β̂ – β0‖1. (4.14)

Step 3: decomposition of ℓ1 norms. From now on, we will use the notation βS0
to denote the p-dimensional vector β in which the elements that are not in S0 are
replaced by 0. Note that β = βS0 +βSC0 . Using the reverse triangle inequality, we have:

‖β0,S0‖1 – ‖β̂S0‖1 ≤ ‖β0,S0 – β̂S0‖1.

We also note that β0,SC0 = 0, so ‖β0,SC0 ‖1 –‖β̂SC0 ‖1 = –‖β0,SC0 – β̂SC0 ‖1. Thus, from (4.14),
we obtain:

(β̂ – β0)′Σ̂(β̂ – β0) ≤ 3λn
2 ‖β0,S0 – β̂S0‖1 – λn

2 ‖β0,SC0 – β̂SC0 ‖1. (4.15)

Step 4: cone condition and restricted eigenvalues. This means that we have the
following cone condition:

‖β0,SC0 – β̂SC0 ‖1 ≤ 3‖β0,S0 – β̂S0‖1,

so β̂ – β0 ∈ [S0, 3]. Using Assumption 4.4 on the restricted eigenvalue of the
empirical Gram matrix and the Cauchy–Schwarz inequality ‖δS0‖1 ≤ √s‖δS0‖2, we
have:

(β̂ – β0)′Σ̂(β̂ – β0) ≥ κ2
3(Σ̂)‖β0,S0 – β̂S0‖22 ≥ κ2

3(Σ̂)
‖β0,S0 – β̂S0‖21

s . (4.16)

Step 5: conclusion. Using inequalities (4.15) and (4.16), notice that:

2(β̂ – β0)′Σ̂(β̂ – β0) + λn‖β0 – β̂‖1 ≤ 4λn‖β0,S0 – β̂S0‖1

≤ 4λn
√s

κ3(Σ̂)
√(β̂ – β0)′Σ̂(β̂ – β0)

≤ 4λ2
n

s
κ2
3(Σ̂)

+ (β̂ – β0)′Σ̂(β̂ – β0),

where the last inequality uses 4uv ≤ u2 + 4v2. We finally obtain:

(β̂ – β0)′Σ̂(β̂ – β0) + λn‖β0 – β̂‖1 ≤ 4λ2
n

s
κ2
3(Σ̂)

.
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Finally, with probability greater than 1 – α:

‖β0 – β̂‖1 ≤ 42σM
ακ2

3(Σ̂)√
2s2 log(2p)

n . □

Proof of Lemma 4.3. By substituting the model 4.5, we obtain:

√n (̂τ – τ0) = π̂–1 [1n
n
∑
i=1

DiXi]
′

√n (β0 – β̂) + π̂–1√n [1n
n
∑
i=1

Diεi]. (4.17)

From the equation above, we could hope that since β̂ converges in ℓ1 norm, the first
term converges to zero in probability and we are left only with the second term. This
is not the case. By the central limit theorem – using also the law of large numbers
and the continuous mapping theorem to prove π̂

p⟶ π0 – and Slutsky’s theorem,
we have:

π̂–1 [ 1
√n

n
∑
i=1

Diεi]
d⟶  (0, σ

2

π0
).

Moreover, in general, we can show that:

|
|
|
[1n

n
∑
i=1

DiXi]
′

√n (β0 – β̂)
|
|
|
≈ s√log p → ∞.

The underlying intuition is twofold. By the law of large numbers, we have:

[1n
n
∑
i=1

DiXi]
p⟶ π0μ1.

Generally, μ1 ≠ 0 and this term does not become zero. Moreover, since p → ∞, we
have ‖√n(β̂ – β0)‖1 ≈ s√log p which does not become zero, proving the result. □

Proof of Lemma 4.4. We start from the proof of Lemma 4.3. Now, thanks to
assumption 4.7, we obtain:

‖
‖
‖

1
√n

n
∑
i=1

DiXi
‖
‖
‖∞

≲ √log p.

Using Theorem 4.1 and the inequality |a′b| ≤ ‖a‖∞ ‖b‖1, we have:

|
|
|
[ 1
√n

n
∑
i=1

DiXi]
′

[β0 – β̂]
|
|
|
≤
‖
‖
‖

1
√n

n
∑
i=1

DiXi
‖
‖
‖∞
‖
‖β0 – β̂‖‖1
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≲ s log p
√n

→ 0,

by the growth condition Assumption 4.6. Therefore, the quantity on the left-hand
side of the above inequality converges to zero in probability (convergence inℓ1 norm
implies convergence in probability). Using Slutsky’s theorem and Equation (4.17),
we obtain the result. □

4.8.2 Additional results

Lemma 4.5 was used in the calculation of the distribution of the post-selection
estimator.

Lemma 4.5 (Independence, according to Leeb, 2006).

τ̂(R) ⊥⊥ β̂(U).

Proof of Lemma 4.5 We use the following matrix notations: Xj = (Xi,j)1≤i≤n for all
j = 1, 2, y = (Yi)1≤i≤n, and X = (X ′

i)1≤i≤n. We note that τ̂(R) = [X1
′X1]–1X1

′y, and we
define X1 := In – X1[X1

′X1]–1X1
′, the projector onto the orthogonal complement

of the column space of X1. Let XO := [X1 : X1X2] be the matrix, and β̂O be the
coefficient obtained by regressing y on XO, i.e., β̂O = [XO′XO]–1 [XO′y]. We can show
that:

β̂O = [ τ̂(R)
[X2

′X1X2]–1 X2
′X1y

] ,

and that τ̂(R) and [X2
′X1X2]–1 X2

′X1y are uncorrelated, according to Cochran’s
theorem. Using Frish–Waugh–Lovell theorem (Theorem 4.2 at the end of this
chapter), [X2

′X1X2]–1 X2
′X1y = β̂(U), which completes the proof. □

Lemma 4.6, taken from Chatterjee (2013), provides a bound on the tail distribu-
tion of the maximum of Gaussian random variables. This lemma is actually more
general and applies to sub-Gaussian random variables. The reader can refer to
Vershynin (2018) for a definition of sub-Gaussian property as well as results on
probabilities in high dimensions. We also recall the Frisch–Waugh–Lovell theorem
(4.2). In this regard, the reader can also consult the regression anatomy formula in
Angrist and Pischke (2009, p. 35–36).

Lemma 4.6 (Concentration inequality for Gaussian random variables). Consider p
Gaussian random variables, such that for j = 1,…, p, ξj ~  (0, σ2j ), and let
L = max

j=1,…,p
σj. Then:
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E [max
j=1,…,p

|ξj|] ≤ L√2 log(2p).

Proof of Lemma 4.6 Since ξj ~  (0, σ2j ), a direct calculation shows that E [ecξj] =

e
c2σ2j
2 for all c ∈ R. It should be noted that the proof will only use that ξj is sub-

Gaussian, i.e., E [ecξj] ≤ e
c2σ2j
2 .

E [max
j=1,…,p

|ξj|] = 1
cE [log {exp ( max

j=1,…,p
c|ξj|)}]

≤ 1
cE [log {

p

∑
j=1

ec|ξj|}]

≤ 1
cE [log {

p

∑
j=1

ecξj + e–cξj}]

≤ 1
c log {

p

∑
j=1

E [ecξj] + E [e–cξj]}

≤ 1
c log {2pe c2L2

2 }

= log(2p)
c + cL2

2 ,

where the third inequality uses Jensen’s inequality and the fourth uses the remark at
the beginning of the proof. The bound is minimized for the value c∗ = √2 log(2p)/L
and equals L√2 log(2p), which completes the proof. □

Theorem4.2 (Frisch–Waugh–Lovell, Frisch andWaugh, 1933; Lovell, 1963) Let’s con-
sider the regression of the n-dimensional vector y on the full rank n × p matrix
X. We consider the partition: X = [X1 : X2], and define X1 := X1[X1

′X1]–1X1
′,X1 := In – X1 , and X and X for X, respectively. Let’s consider these two

quantities:

1. β̂ = (β̂′1, β̂′2)′ = (X′X)–1X′y,
2. β̃2 = (X2

′X1X2)–1X2
′X1y,

then β̃2 = β̂2.

Proof of Theorem 4.2. Let’s consider the decomposition:

y = Xy +yy = Xβ̂ +yy = X1β̂1 + X2β̂2 +Xy.
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Pre-multiply by X2
′X1 :

X2
′X1y = X2

′X1X1β̂1 + X2
′X1X2β̂2 + X2

′X1Xy

= 0 + X2
′X1X2β̂2 + 0.

Therefore, β̂2 = (X2
′X1X2)–1X2

′X1y = β̃2. □



Chapter 5
Generalization andmethodology

This chapter extends the intuition behind the double selectionmethod, presented in
the previous chapter, in two ways. First, it goes beyond the linear case to encompass
a more general model summarized by an orthogonal score functionψ(Z, τ, η) that is
used to make inference on the low-dimensional target parameter τ0 in the presence
of a high-dimensional nuisance parameter η0. Second, it applies to a more general
problem, of which variable selection is a part. In this context, we assume at a mini-
mum that η0 is a complex object that will be estimated usingmachine learning tools.
This can reflect the idea of a parsimonious nuisance parameter requiring variable
selection, but it can also reflect the presence of a nuisance parameter that is believed
to be better estimated by nonlinear methods, such as random forests or neural net-
works. The ultimate goal is to obtain favorable properties for the estimator of τ0, in
order to guarantee theoretically reliable tests and confidence intervals.

Here, the intention is not to exhaustively list all possible machine learning meth-
ods to estimate η0 – that would be pointless – we can mention Lasso, post-Lasso
and Ridge regressions, elastic nets, regression trees and random forests, neural net-
works, aggregated methods, etc. The use of each of these methods is justified by the
assumptions we are willing to make about the form of the parameter η0. We simply
give a general framework that can support the use of these methods.

Section 5.1 therefore generalizes the intuition given in the previous chapter.
Section 5.2 applies this theory to orthogonal scores for estimating treatment effects,
as already encountered in Chapter 3. Section 5.3 presents estimation by sample
splitting, which is strongly recommended in this context because it allows for
more robust estimation by relaxing overly strict assumptions (in theory) and avoid-
ing overfitting (in practice). The following two sections present simulations and
empirical examples.

5.1 Theory: immunization

5.1.1 Intuition

In the previous chapter (Section 4.5), we showed that the double selection method
allows to ensure that the estimation of the high-dimensional nuisance parameter
does not affect the asymptotic distribution of the estimator of the parameter of inter-
est. This section will allow to move to an additional level of abstraction, beyond the
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case of linear regression. For this purpose, let’s assume that the parameter of inter-
est, τ0, solves the equation E[m(Zi, τ0, β0)] = 0 for a known score function m(.), a
vector of observables Zi, and a nuisance parameter β0. To make these objects less
abstract, we can think of the fully parametric case where m(.) is the derivative of
the log-likelihood Wasserman (2010, Chapter 9). In the previous section, we had
Zi = (Yi,Di,Xi), and m(Zi, τ, β) := (Yi – Diτ – X ′

iβ)Di. In Lemma 4.3, the source of
the problem was that the derivative of the estimating equation with respect to the
nuisance parameter was not zero:

E [∂βm(Zi, τ0, β0)] = –π0μ1 ≠ 0.

We would like to replace m with another score function or estimating moment ψ
and a potentially different nuisance parameter from β0, η0, so that:

E [∂ηψ(Zi, τ0, η0)] = 0. (5.1)

The condition (5.1) means that the moment condition to estimate τ0 is not affected
by small perturbations around the true value of the nuisance parameter η0. This is
the intuition behind the double selection or immunized orNeyman-orthogonalized
procedure (Chernozhukov et al., 2017; Belloni et al., 2017; Chernozhukov et al.,
2018). Modifying the estimating equation allows us to neutralize the effect of first-
stage estimation and remove the regularization bias. We will say that any function
ψ which satisfies condition (5.1) is a Neyman-orthogonal or simply orthogonal
score.

5.1.2 Asymptotic normality

The ideas presented in this section have been developed by Chernozhukov et al.
(2015a, 2015b, 2017); Belloni et al. (2017), and Chernozhukov et al. (2018).

Assumption 5.1 (Orthogonal moment condition). The parameter of interest τ0 is the
root to the equation:

E [ψ(Zi, τ0, η0)] = 0,

with a known real-valued function ψ(.) that satisfies the orthogonality condition
(5.1), a vector of observable variables Zi, and a high-dimensional parsimonious nui-
sance parameter η0 such that ‖η0‖0 ≤ s. The design satisfies the growth condition
Assumption 4.6.

Furthermore, suppose we have a first-stage estimator η̂ of η0 that is of sufficient
quality.
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Assumption5.2 (Nuisance parameter estimation). Let η̂ be a first-stage estimator such
that with high probability:

‖η̂‖0 ≲ s,

‖η̂ – η0‖1 ≲ √s2 log p/n,

‖η̂ – η0‖2 ≲ √s log p/n.

We consider this estimator to be given. It does not need to be a Lasso, but the Lasso
or post-Lasso clearly satisfy these assumptions in a sparse or approximately sparse
scenario, i.e., in cases where only a few control variablesmatter. Chernozhukov et al.
(2018) extend these conditions to anymachine learning procedure of sufficient qual-
ity. Theywill be discussed in Section 5.3. Note that the recommendedMLprocedure
depends on the assumptions made about η0 since they will determine the perfor-
mance of this tool. For example, if we assume that η0 is sparse, a Lasso should work
well. On the other hand, if we assume that η0 should capture a piecewise-constant
relationship between an explanatory variable and control variables, wewould rather
choose a random forest. The estimator of τ0 that we will consider is τ̌ such that:

1
n

n
∑
i=1

ψ(Zi, τ̌, η̂) = 0. (5.2)

For clearer exposition, we consider the simple case of Assumption 5.3 below.

Assumption 5.3 (Affine-quadratic Model). The function ψ(.) is such that:

ψ(Zi, τ, η) = Γ1(Zi, η)τ – Γ2(Zi, η),

where Γj, j = 1, 2, are functions whose second-order derivatives with respect to η are
constant over the convex parameter space of η.

The class ofmodels abovemay seem restrictive, but it includesmany usual param-
eters of interest such as the average treatment effect (ATE), the average treatment
effect on the treated (ATT), the local average treatment effect (LATE), as well as any
coefficient in a linear regression.

Theorem 5.1 (Asymptotic normality of the immunized estimator) The immunized
estimator τ̌, defined by (5.2) in the affine-quadratic model of Assumption 5.3
under Assumptions 4.6, 5.1, and using a first-stage nuisance estimator satisfying
Assumption 5.2, has the property that:

√n (τ̌ – τ0)
d⟶  (0, σ2Γ),

where σ2Γ := E[ψ(Zi, τ0, η0)2]/E[Γ1(Zi, η0)]2.
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In practice, σ2Γ is simply estimated from averages, replacing the unknown quan-
tities with their estimators. The proofs can be found in the appendix of this
chapter.

Remark 5.1 Importanceof Theorem5.1

Theorem 5.1 is relatively powerful: if one finds an estimator defined as the root of an orthog-
onal moment condition, i.e., one that satisfies condition (5.1), then this estimator will be
asymptotically Gaussianwith a variance that can be estimated. This theoremcovers the case
of double selection seen in Section 4.5. This thus offers the possibility of inference on the
parameterof interest. It isworthhighlighting theassumptions thatmatter themost. Assump-
tion 5.1 is extremely important and constitutes the object of this entire section. The key
element is that ψmust satisfy condition (5.1), without which we cannot control the term I′2
in the proof. Assumption 5.2 concerns the quality of the estimation of the nuisance param-
eter: although it can be made more general to accommodate for other methods from the
literature onmachine learning, the estimator of thenuisanceparametermust have goodper-
formance. Assumption 4.6 about the growth condition is necessary but not very restrictive:
p can grow as fast as enα for α ∈]0, 1/2[! Assumption 5.3 is not important: it is a simplifica-
tion in the context of this course tomake the proof easier. Moreover, it is not very restrictive:
many parameters of interest fall within this framework.

Remark 5.2 Overidentified case

Since we consider a scalar parameter of interest τ0 identified by a single equation, Equation
(5.2) was suitable as a definition. In general, when τ0 is identified by a set of equations of
higher dimension, the GMM estimator will take the form:

τ̂ = argmin
τ∈Rd

‖
‖
‖
1
n

n
∑
i=1

ψ(Zi, τ, η̂)
‖
‖
‖

2

2
.

The reason is that n–1∑n
i=1 ψ(Zi, τ, η̂) = 0will generally not have a solution.

For a given score function m(.) that does not satisfy condition (5.1), how can we
find a ψ(.) that does satisfy it? We note that the nuisance parameter is denoted by
β0 in the first case and by η0 in the second. This different notation means that most
of the time, η0 is different from β0 and is generally of higher dimension. Section 4.5
covered the linear case. Chernozhukov et al. (2015a) address the cases of maximum
likelihood and GMM, while Section 2.2 of Chernozhukov et al. (2018) covers an
even wider range of models. Beyond the linear case, Farrell (2015) presents a more
generalmethod for estimating treatment effect parameters (ATE, ATT) using similar
ideas, as we will see in the next section.
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5.2 Orthogonal scores for treatment effect estimation

We consider the model from Section 5.1 of Chernozhukov et al. (2017). This is
a more flexible model where we allow for heterogeneous treatment effects. Let
(Y,D,X) be a vector such that D ∈ {0, 1} and:

Y = g0(D,X) + ε, E [ε | D,X] = 0,

D = m0(X) + ξ, E [ξ | X] = 0.

Section 4.5 was a particular case where we had g0(D,X) = Dτ0 + X ′β0 and m0(X) =
X ′δ0. In this type of configuration, there are usually two standard parameters of
interest: the average treatment effect (ATE) and the average treatment effect on the
treated (ATT),

τATE0 = E [g0(1,X) – g0(0,X)],
τATT0 = E [g0(1,X) – g0(0,X) | D = 1].

In Section 4.5, τATE0 = τATT0 = τ0 because the treatment effect was homogeneous. For
ATE, the orthogonal score from Hahn (1998) is defined as:

ψATE(Zi, τ, η)

= g(1,X) – g(0,X) + D(Y – g(1,X))
m(X) – (1 – D)(Y – g(0,X))

1 –m(X) – τ.

The true value of the nuisance parameter is η0 = (g0,m0). For ATT, the orthogonal
score is:

ψATT(Zi, τ, η) = 1
π0
(D – m(X)

1 –m(X) (1 – D)) (Y – g(0,X)) – D
π0

τ.

The true value of the nuisance parameter is η0 = ( g0,m0, π0) with π0 = P (D = 1).
These orthogonal scores form the basis of Farrell (2015) and Bléhaut et al. (2023).
Similar expressions exist for the local average treatment effect (LATE), and we refer
to Chernozhukov et al. (2018).

Remark 5.3 Trick for computing the variance

These orthogonal scores fall into the affine-quadratic type of Assumption 5.3, so that the
standard error computation will simply result from the expression of Theorem 5.1. More-
over, in both cases, E [Γ1(Zi, η0)] = –1 which implies that τ0 = E [Γ2(Zi, η0)]. As a result,
according to Theorem 5.1, σ2Γ = V [Γ2(Zi, η0)]. This observation makes the computation of
the standard error quite simple: for each observation, it suffices to store Γ̂2(Zi, η̂) in a vector
gamma and compute the standard error using std(gamma)/sqrt(n).
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5.3 Sample-splitting

In this section, we introduce an additional technique that further generalizes the
immunization method discussed in the previous section. Indeed, sample splitting is
the ingredient that relaxes some of the constraints on the estimation quality of the
nuisance parameter (Assumption 5.2). This section presents the method without
going into the theoretical details, which will be covered in Section 7.2.

As previously, we consider a low-dimensional parameter of interest τ0, a high-
dimensional nuisance parameter η0, and, most importantly, an orthogonal score
function ψ(Z, τ, η). It is necessary for ψ to satisfy (5.1), as emphasized in Section
5.1. We present the double-machine learning method with cross-fitting proposed
by Chernozhukov et al. (2017).

Remark 5.4 Doublemachine learningwith cross-fitting

We assume that we have a sample of n copies of the random vector Zi, where n is divisible
by an integerK for simplicity of notation.

1. Let (Ik)k=1,…,K be a random partition of indices {1,…, n} such that each set Ik has a
size of n/k. For each k ∈ {1,…,K}, we define ICk := {1,…, n}\Ik.

2. For each k ∈ {1,…,K}, we construct an estimator based on amachine learning
procedure for η0 using only the auxiliary sample ICk :

η̂k = η̂ ((Zi)i∈ICk )
.

3. For each k ∈ {1,…,K}, using the main sample Ik, we construct the estimator τ̌k as
the solution of:

1
n/K ∑

i∈Ik
ψ(Zi, τ̌k, η̂k) = 0.

4. We aggregate the estimators τ̌k over eachmain sample:

τ̌ = 1
K

K
∑
k=1

τ̌k.

Theorem 3.1 in Chernozhukov et al. (2017) shows that the cross-fitted estimator τ̌ is
asymptotically Gaussian under reasonable conditions. There is no theory for choos-
ing K, but traditionally recommended values are K = 2, 4, 5. The term cross-fitting
comes from the particular technique of sample partitioning adopted here, where
the auxiliary sample ICk used to estimate η0 and the main sample Ik used to esti-
mate τ0 are permuted in order to maintain efficiency (the sample Ik is much smaller
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than n). Sample partitioning is necessary for technical reasons: it allows control-
ling the residual terms without relying on strong assumptions about the quality of
nuisance parameter estimation. In particular cases, Assumption 5.2 can be replaced
by the requirement that the nuisance parameter is estimated at a rate of n–1/4 in
the worst case scenario (Chernozhukov et al., 2018). Performance guarantees exist
for certain versions of most classical machine learning methods, which makes it
possible to satisfy this condition. This allows for the use of numerous methods to
estimate the nuisance parameter. Intuitively, sample splitting eliminates bias aris-
ing from overfitting by using an auxiliary sample solely for estimating the nuisance
parameter η0 and then using the main sample solely for prediction.

Remark 5.5 Doublemachine learning, standard error estimation

The standard error of the previous estimator is easily estimated by computing:

σ̂2 = 1
n

n
∑
i=1

ψ(Zi, τ̌, η̂k(i))2,

where k(i) = {k ∈ {1,…,K} : i ∈ Ik}. Thus, an asymptotic 1 – α confidence interval is given
by:

[τ̌ ± Φ–1 (1 – α
2 )

σ̂
√n

] .

Notice that the sample splitting technique advocated here introduces more uncer-
tainty, which must be taken into account when presenting the results. Cher-
nozhukov et al. (2017) propose to replicate this procedure S times by considering
S different random partitions of the sample and recommend reporting the average
estimator through cross-fitting, along with a corrected standard error.

Remark 5.6 In practice

Suppose that we observe the outcome, the treatment status, and a set of covariates
(Zi)i=1,…,n = (Yi,Di, Xi)i=1,…,n from a population of interest and we want to estimate the
treatment effect for the treated τATT0 . Here is a possible strategy:

1. We partition the indices {1,…, n} into two, so that each set I1, I2 has a size n/2.
2. Using only the sample I1, we construct a ML estimator of g(0, X) andm(X). For

example, we can estimate g(0, X) by training a feedforward neural network on Yi and
Xi for the untreated individuals in this sample. We denote this estimator by ĝI1(x).

Continued
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Remark 5.6 Continued

Similarly,m(X) could be estimated by performing a Logit-Lasso onDi and Xi in this
sample. We denote this estimator by m̂I1(x).

3. Now, letʼs use these estimators on sample I2 to compute the treatment effect

τ̌I2 := 1
∑i∈I2 Di

∑
i∈I2

(Di –
m̂I1(Xi)

1 – m̂I1(Xi)
(1 – Di)) (Yi – ĝI1(Xi))

4. We repeat steps 2–3, swapping the roles of I1 and I2 to obtain τ̌I1 .
5. We compute the average of the two estimators:

τ̌ =
τ̌I1 + τ̌I2

2 .

5.4 Simulations: regularizationbias

This simulation exercise illustrates two observations: (i) the naive post-selection
estimator suffers from a significant regularization bias, (ii) the cross-fitting estimator
trades off a higher bias for a lower mean squared error compared to the immunized
estimator that uses the entire sample.

5.4.1 Data-generating process

Let’s start by describing the DGP. The outcome equation is linear: Yi = Diτ0 +X ′
iβ0 +

εi, where τ0 = 0.5, εi ⊥⊥ Xi, and εi ~  (0, 1). The treatment equation follows a Probit
model, Di|Xi ~ Probit (X ′

iδ0). The covariates are simulated as Xi ~  (0, Σ), where
each entry of the variance-covariancematrix is defined as follows: Σj,k = .5|j–k|. Every
other element of Xi is replaced by 1 if Xi,j > 0 and 0 otherwise. A crucial aspect of
the DGP lies in the form of the coefficients δ0 and β0:

β0j = {
ρd(–1) j/j2, if j < p/2

0, otherwise
, δ0j = {

ρy(–1) j/j2, if j < p/2

ρy(–1) j+1/(p – j + 1)2, otherwise

Both equations are in an approximately sparse framework. The constants ρy and
ρd are defined to set the signal-to-noise ratio, in the sense that a larger constant
ρy implies a more important role for the covariates. For simplicity, we express
them in terms of the R2 of each equation in the DGP. The trick here is that some
variables that are important for the treatment assignment are not relevant for the
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outcome equation. The fact that the selection procedure in one equation omits cer-
tain variables relevant for the outcome should create a bias and a non-Gaussian
behavior.

5.4.2 Estimators

We estimate a model based on linear equations for both the outcome and the treat-
ment as in Section 4.5, although it does not correspond to the DGP. We compare
three estimators:

1. A post-selection estimator where a Lasso selection step is performed using the
outcome equation described in Section 4.4;

2. A double selection estimator based on the Lasso, described in Section 4.5;
3. A double selection estimator based on the Lasso with cross-fitting (K = 5) as

described in Section 5.3.

We report the bias, the RMSE and the coverage rate. The coverage rate is defined
as the proportion of simulations for which the true τ0 is contained in the 95% con-
fidence interval. It is possible to play with these simulations using the script in the
GitHub repository DoubleML_Simulation.R. This file defines each step and
uses very few packages so that you can easily follow what is happening. The Lasso
regression is coded from scratch in functions/LassoFISTA.R. Table 5.1 and
Figure 5.1 show the result in a particular high-dimensional setting.

5.5 Empirical application: job trainingprogram

We revisit the dataset from LaLonde (1986) using the application in Bléhaut
et al. (2023). This dataset was originally constructed to evaluate the impact of

Table 5.1 Estimation of τ0

Estimator:
Post-selection

naive
Double
selection
simple

Double
selection

cross-fitting
(1) (2) (3)

Bias 0.397 0.012 0.061
√MSE 0.457 0.186 0.235
Coverage rate 0.212 0.942 0.915

Note: Parameter values: R = 10000, n = 200, p = 300, K = 5, τ0 = 0.5, R2
y = 0.1,

R2
d = 0.8. The curve represents the density of the best unbiased estimator.
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Figure 5.1 Simulated distributions of τ̂ – τ0
Note: R = 10000, n = 200, p = 300, K = 5, τ0 = 0.5, R2

y = 0.1, R2
d = 0.8. The curve represents the

density of the best unbiased estimator.

the National Supported Work (NSW) program. The NSW is a temporary and
subsidized vocational training program that targets individuals facing persistent
employment access issues, such as former delinquents, recovering drug addicts,
long-term social benefit recipients, and school dropouts. Here, the quantity of inter-
est is the average treatment effect on the treated (ATT), defined as the impact of
program participation on the annual earnings in 1978 in dollars. The treated group
consists of individuals randomly assigned to this program from the at-risk pop-
ulation (n1 = 185). Two control groups are available. The first is experimental:
it is directly comparable to the treated group as it was generated by a random-
ized trial (sample size n0 = 260). The second comes from the Panel Study of
Income Dynamics (PSID) (sample size n0 = 2490). The presence of the experi-
mental sample allows to establish a benchmark to evaluate the ATT computed with
observational data. We use these datasets to illustrate the tools discussed in the
chapter.

To allow for a flexible specification, we consider the framework of Farrell (2015)
and take the raw covariates in the dataset (age, education level, indicator of being
African-American orHispanic,marital status, absence of a diploma, income in 1974,
income in 1975, absence of income in 1974, absence of income in 1975), two-way
interactions between the four continuous variables and categorical variables, pair-
wise interactions between the dummy variables, and up to fifth-degree polynomial
transformations of the continuous variables. The continuous variables are linearly
rescaled to the interval [0, 1]. We end up with 172 variables among which we need
to perform selection. The experimental benchmark for the estimation of the ATT
is $1,794 (633). We use the hdm package to implement Lasso and Logit-Lasso, and
the randomForest package to grow a random forest of 500 trees. We divide the
sample into five equally sized chunks.

The file DoubleML_Lalonde.R details each step and calculates an ATT esti-
mate where the propensity score and the outcome functions are estimated using (i) a
Lasso procedure and (ii) a random forest. We compute standard errors and confi-
dence intervals. Table 5.2 presents the results. With or without taking into account
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Table 5.2 Treatment effect in LaLonde (1986)

Estimator
Experimental Cross-fitting Cross-fitting

1 Partition 20 Partitions
(1) (2) (3)

OLS 1794
(633)

Lasso 2305 2403
(676) (685)

Random forest 7509 1732
(6711) (1953)

multiple data partitions, the Lasso procedure ends up being quite close to the exper-
imental estimate. The results are more mixed for the random forest: the simple
cross-fitting procedure gives very imprecise results. This could be due to a particu-
larly unfortunate split or a particularly poor performance of the standard random
forest algorithm in this case. When considering multiple data partitions, the point
estimate is reasonable but the standard error remains very high. Overall, the take-
homemessage is to be cautious and test multiple machine learning algorithms when
possible, and consider many data splits so that the results do not overly depend
on the partitions. For a comparison of a wide range of machine learning tools, see
Section 6.1 of Chernozhukov et al. (2018).

5.6 Summary

Key concepts

Neyman-orthogonal/immunization procedure, sample splitting, double-machine learning,
orthogonal scores for treatment effect estimation.

Questions

1. Is the use of Lasso in the first step of Section 5.1 the key ingredient for solving the
post-selection inference problem?

2. What is the overfitting bias? How can it be avoided?

Continued
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Continued

3. In which case(s) do we prefer to use a random forest rather than a Lasso, and vice
versa?

4. What is the objective of sample partitioning, and what is its cost?
5. Which part of the course could justify/motivate the use of the median?

τ̂ =median ({̂τk}Kk=1)

σ̂2,median =median ({σ̂2k + (̂τk – τ̂)2}
K

k=1
) .

6. In order to determine the true effect of gender on hourly wage (what is called the
gender wage gap), an econometrician proposes to estimate a model with many
control variables and present the estimates of a secondmodel where the statistically
insignificant control variables from the first model are removed. What do you think of
this strategy?

Codeanddata

The git repository of this book allows the reproduction of the examples from this chapter:
DoubleML_Simulation.R and DoubleML_Lalonde.R, respectively, for the simula-
tions and the empirical application. The R program functions/LassoFISTA.R calcu-
lates the Lasso estimator.

Additional references

In addition to the prerequisites given in Chapter 2, Hastie et al. (2009) is the reference
manual for standard machine learning methods. We also highly recommend reading Athey
and Imbens (2019), which targets empirical economists. Regarding this chapter itself, the
most complete and clear reference is Chernozhukov et al. (2017). Other similar references,
although not necessarily as comprehensive, are Chernozhukov et al. (2015a,b). This presen-
tation by Victor Chernozhukov is a good introduction: youtu.be/eHOjmyoPCFU.

5.7 Proofs andadditional results

The proofs in this chapter are intentionally less rigorous than in the previous
chapter, in order to provide intuition without getting lost in technical details. We
refer the reader to Lemmas 2 and 3 in Chernozhukov et al. (2015a) and Belloni et al.
(2017) for the technical details.

http://youtu.be/eHOjmyoPCFU
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Proof of Theorem 5.1 τ̌ defined by (5.2) is such that:

τ̌ = [1n
n
∑
i=1

Γ1(Zi, η̂)]
–1 1

n

n
∑
i=1

Γ2(Zi, η̂).

According to Assumption 5.3, we can verify:

√n (τ0 – τ̌) = [1n
n
∑
i=1

Γ1(Zi, η̂)]
–1 1
√n

n
∑
i=1

ψ(Zi, τ0, η̂). (5.3)

First, we need to show that n–1∑n
i=1 Γ1(Zi, η̂) → EΓ1(Zi, η0). By the affine-quadratic

Assumption 5.3:

1
n

n
∑
i=1

Γ1(Zi, η̂) = 1
n

n
∑
i=1

Γ1(Zi, η0)
  

:=I1

+ [1n
n
∑
i=1

∂ηΓ1(Zi, η0)]
′

(η̂ – η0)
  

:=I2

+ 1
2 (η̂ – η0)′ [

1
n

n
∑
i=1

∂η∂η′Γ1(Zi, η0)] (η̂ – η0)
  

:=I3

.

Under regularity assumptions, by the Law of Large Numbers, I1 → E[Γ1(Zi, η0)].
Then:

|I2| ≤
‖
‖
‖
1
n

n
∑
i=1

∂ηΓ1(Zi, η0)
‖
‖
‖∞
‖η̂ – η0‖1 ≲√

s2 log p
n → 0,

and finally:

|I3| ≤
1
2‖η̂ – η0‖22

‖
‖
‖
1
n

n
∑
i=1

∂η∂η′Γ1(Zi, η0)
‖
‖
‖sp(s log n)

≲ s log p
n → 0,

if we assume that the sparse norm of the matrix of second-order derivatives (which
does not depend on η̂) is bounded:

‖
‖
‖
1
n

n
∑
i=1

∂η∂η′Γ1(Zi, η0)
‖
‖
‖sp(s log n)

≲ 1,

which occurs under reasonable conditions, see Rudelson and Zhou (2013). Sec-
ondly, we need to show that 1

√n ∑
n
i=1 ψ(Zi, τ0, η̂)

d→  (0,E[ψ2(Zi, τ0, η0)]). We
consider a similar decomposition:
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1
√n

n
∑
i=1

ψ(Zi, τ0, η̂) = 1
√n

n
∑
i=1

ψ(Zi, τ0, η0)
  

:=I′1

+ [ 1
√n

n
∑
i=1

∂ηψ(Zi, τ0, η0)]
′

(η̂ – η0)
  

:=I′2

(5.4)

+ √n
2 (η̂ – η0)′ [

1
n

n
∑
i=1

∂η∂η′ψ(Zi, τ0, η0)] (η̂ – η0)
  

:=I′3

.

A standard central limit theorem guarantees that I′1
d→  (0,E[ψ2(Zi, τ0, η0)]) as

long as E[ψ2(Zi, τ0, η0)] < ∞. We have:

|I′2| ≤
‖
‖
‖

1
√n

n
∑
i=1

∂ηψ(Zi, τ0, η0)
‖
‖
‖∞
‖η̂ – η0‖1 ≲

s log p
√n

→ 0,

provided we have a moderate deviation bound:

‖
‖
‖

1
√n

n
∑
i=1

∂ηψ(Zi, τ0, η0)
‖
‖
‖∞

≲ √log p,

which occurs under weak conditions using a more general version of lemma 4.6,
thanks to condition (5.1) in Assumption 5.1. Finally:

|I′3| ≤
√n
2 ‖η̂ – η0‖22

‖
‖
‖
1
n

n
∑
i=1

∂η∂η′ψ(Zi, τ0, η0)
‖
‖
‖sp(s log n)

≲ s log p
√n

→ 0,

if we assume that the norm of the matrix is bounded:

‖
‖
‖
1
n

n
∑
i=1

∂η∂η′ψ(Zi, τ0, η0)
‖
‖
‖sp(s log n)

≲ 1.

These steps prove the desired result given Equation (5.3). □



Chapter 6
Highdimension andendogeneity

This chapter reviews key findings related to variable selection in the instrumen-
tal variable (IV) linear model. In particular, we relax the exogeneity assumption,
E[ε|D,X] = 0, of the model (4.5) in Chapter 4. Instead, we assume that the econo-
metrician is observing a set of IVs that satisfy an exogeneity assumption specified
below, and ask how to select the best set of these instruments to obtain the most
precise inference. The number of potential candidates can also be greater than the
sample size. We distinguish two different cases of high dimension in the IV model:

– the case with (truly) many instruments, i.e., pzn > n, where the number of
instruments pzn is allowed to grow with the sample size n,

– the case with (truly) many endogenous variables, i.e., pdn > n, where pdn is
the number of endogenous variables. In this case, we always assume that we
observe more instruments than endogenous variables, pzn > pdn.

These two frameworks are very natural in empirical applications, but inference in
the second case is more complicated and will not be addressed here (see the remark
at the end of the section). IV techniques for addressing endogeneity problems are
widely used but can lead to imprecise inference. As introduced in Section 3.4.2, with
few instruments and controls, and following Amemiya (1974), Chamberlain (1987),
and Newey (1990), we can try to improve the precision of IV techniques by using
optimal instruments. We consider the model below:

Assumption 6.1 (Linear IV model). Consider n i.i.d. observations (Yi,Di,Xi,Zi) such
that:

Yi = Diτ0 + X′
iβ0 + εi, E[εi] = 0, E[εi|Zi,Xi] = 0, (6.1)

where
1. Xi is a vector of pxn exogenous control variables, including the constant;
2. Di is an endogenous variable, E [εi|Di] ≠ 0;
3. Zi is a vector containing pzn instruments;
4. There is a large number of controls pxn ≫ n and instruments pzn ≫ n.

For simplicity, we define px := pxn and pz := pzn. Even when the researcher has only
one valid instrument Z, they can still consider a large number of transformations of
this initial instrument ( f1(Z), . . . , fp(Z))′ using series estimators based on B-Splines,
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polynomials, etc. This makes it a high-dimensional problem. This also highlights
the generality of the context of the Assumption 6.1. In Section 6.1, we present the
methodology of Belloni et al. (2012), using the Lasso and post-Lasso techniques to
estimate the first stage regression of the endogenous variables on the instruments.
As described in Chernozhukov et al. (2015b), this problem follows the structure of
the double machine learning method described in Section 4.5. The estimation of
the parameters of interest uses orthogonal or immune estimation equations that are
robust to small perturbations in the nuisance parameter, similar to what we already
introduced in Section 4.5. One can thus interpret this chapter as an other application
of these tools. For simplicity, here we restrict our focus to the case of conditional
homoscedasticity:

E [ε2|Z,X] = σ2.

We refer to Belloni et al. (2012) for the general case. Building on the results of
Section 3.4 on optimal instruments, in Section 6.1we describe how to use the sparsity
assumption to efficiently estimate the optimal instruments, which are conditional
expectations E [S|Z,X] where S := (D,X ′), in the present high-dimensional setting.
Note that there are many ways to estimate E [S|Z,X] under different assumptions,
but we limit ourselves to this context.

Remark 6.1 Largenumber of endogenous variables

In this book, we restrict ourselves to the case where the number pd of endogenous regres-
sors is fixed. However, several recent articles, in particular Gautier and Rose (2011), Gautier
and Tsybakov (2013), and Belloni et al. (2017), consider the inference of a high-dimensional
parameter τ0 with a high-dimensional nuisance parameter.

This goes beyond the scope of this course but can be useful in the following
situations:

– When economic theory is not explicit enough about the variables that belong to the
truemodel. Here, the search for the “right” subset of potentially endogenous variables
to select in the outcome equation may be impossible.

– We consider many non-linear functions of an endogenous regressor, especially when
the outcome equation is of the form:

Y =
pd

∑
k=1

τ0,kfk(D) + X ′β0 + ε,

where { fk}p
d
k=1 is a family of functions that capture non-linearities.
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6.1 Specificmodel for instrumental variables

We now assume the linear first-stage model:

D = X ′γ0 + Z′δ0 + u, u ⊥⊥ (Z,X), (FS)

where, as described in Assumption 6.2 below, δ0 only has a few important compo-
nents (approximate sparsity). The instruments Z can be correlated with the controls
X. To capture this correlation, we use the model:

Z = ΠX + ζ, X ⊥⊥ ζ, Π ∈ pxn,pxn(R), (6.2)

which gives the following two equations for D and Y:

D = X ′γ0 + X ′Π′δ0 + u + ζ ′δ0 = X ′ (γ0 +Π′δ0)  
:=ν0

+ u + ζ ′δ0
:=ρd

= X ′ν0 + ρd, (6.3)

where ρd ⊥⊥ X and

Y = X ′(ν0τ0) + X ′β0 + ε + τ0ρd = X ′ (ν0τ0 + β0)  
:=θ0

+ ε + τ0ρd
:=ρy

= X ′θ0 + ρy, (6.4)

where ρy ⊥⊥ X. We make three preliminary remarks. First, the following two cases
naturally arise in practice:

1. either the list of available and possible instruments is large, while the econo-
metrician knows that only a few of them are relevant;

2. or, from a small list of regressors Z, optimal instruments can be approximated
using a basis of functions (series estimators using B-Splines, polynomials, etc.).
This case is treated by non-sparse methods in Newey (1990). In this decom-
position, the potential number pz of necessary functions { fj}p

z

j=1 can be higher
than n. Note that instead of Z, one could also consider transformations of the
initial instruments

f = ( f1, . . . , fp)′ = ( f1(Z), . . . , fp(Z))′.

Second, as in Section 4.5, the key assumption that we make on the nuisance compo-
nent is approximate sparsity. This means that A(Z,X) = E[S|Z,X] (recall that here
pd = 1) is assumed to be well approximated by a few (s≪ n) of these pz instruments.
We denote the nuisance component by η0 = (θ0, ν0, δ0, γ0) and assume that it can
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be decomposed into a sparse component ηm0 and a non-sparse component but of
relatively low amplitude ηr0:

Assumption 6.2 (Approximate sparsity). There exists c > 0 such that

η0 = ηm0 + ηr0, supp(ηm0 ) ∩ supp(ηr0) = ∅

‖ηm0 ‖ 0 ≤ s, ‖ηr0‖ 2 ≤ c√s/n, ‖ηr0‖ 1 ≤ c√s2/n.

Third, similarly to Section 4.5, wemust carefully choose themoment equations so
that model selection errors in the estimation of the nuisance parameter component
(here, the optimal instrument or its coefficients in its decomposition on a basis)
have a limited impact on the estimation of the parameter of interest τ0. We now
showhow the problemof optimal instruments can be transposed into the framework
of the immunization procedure developed in Section 4.5, and in particular in the
quadratic-affine model defined in (5.3).

6.2 Immunization for instrumental variables

Starting from Equation (6.1), Chernozhukov et al. (2015b) propose to estimate the
parameter of interest using orthogonalized moments, following the idea described
in Section 5.1 and the Frisch–Waugh–Lovell theorem.

Noting that the optimal instrument is E[D|X,Z] = X ′γ0 +Z′δ0, the problem arises
from the fact that the moment condition

E[φ(W, τ0, η0)] = 0 where φ(W, τ0, η0) := (Y – τ0D – X ′β0)(X ′γ0 + Z′δ0),

does not satisfy the orthogonality conditions:

E [∂φ(W, τ0, η0)
∂β ] = E[X(X ′γ0 + Z′δ0)] ≠ 0. (6.5)

As in the proof of Theorem 5.1 in Section 5.7, a key tool for obtaining asymp-
totic behavior is the Taylor expansion of the empirical counterpart of this equation,
(τ, η) ↦∑n

i=1 φ(Wi, τ, η)/n around (τ0, η0). Here, as in Equation (5.4), the first-order
term related to the nuisance parameter will be problematic to obtain asymptotic
normality. Indeed, under weak conditions on the convergence of the parameter
estimation η0, typically ‖η̂ – η0‖ = Op(n–1/4), this term does not vanish.

The idea is then to use an auxiliary moment equation E(g(W, τ0, η0)) = 0, such
that the linear combination of the twoψ := φ–λ′g, with λ ∈ Rp, satisfies the orthog-
onality conditions. In theory, we should take as many auxiliary moment equations
as the dimensions of the nuisance parameter η0. However, we simplify directly here
since the equation related toφ is already orthogonal with respect to γ0 and δ0, andwe
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will simply ensure that the one related to g is also orthogonal. The natural equation
in our framework comes from the exogeneity condition of X, which gives:

E[g(W, τ0, η0)] = 0 with g(W, τ0, η0) := (Y – τ0D – X ′β0)X.

Imposing the orthogonality condition thus amounts to choosing λ ∈ Rp such that
E [ ∂ψ(W,τ0,η0)

∂β ] = 0. This can be rewritten as λ ∈ Rp satisfying the system:

E [∂φ(W, τ0, η0)
∂β ] = E [∂g(W, τ0, η0)

∂β

′
] λ.

We then obtain directly using (6.5) and (6.2) that taking λ = γ0 +Π′δ0 = ν0 ensures
this condition and therefore

E [ψ(W, τ0, η0)] = 0, (6.6)

where:

ψ(W, τ0, η0) = (Y – τ0D – X ′β0) (Z′δ0 + X ′γ0 – X ′ν0) (6.7)

= (Y – τ0D – X ′ (θ0 – ν0τ0)) (Z′δ0 + X ′γ0 – X ′ν0)
= (Y – X ′θ0 – (D – X ′ν0)τ0) (Z′δ0 + X ′γ0 – X ′ν0) (6.8)

= ((Y – E [Y |X]) – (D – E [D|X])τ0) (E [D|X,Z] – E [D|X]) .

We provide in Section 6.6 another way to derive this equation using projections.
The instrument for D, controlling for the correlation between Z and X, is given by

A(W) =E [D|Z,X] – E [D|X] (6.9)

=Z′δ0 + X ′γ0 – X ′(γ0 +Π′δ0)

= (Z –ΠX)′δ0 (6.10)

= ζ ′δ0.

It is important to note thatmodel (6.8) can be rewritten as the affine-quadraticmodel
(5.3) using:

M(τ0, η) = E [Γ1(W, η)τ0 – Γ2(W, η)] = Γ1(η)τ0 – Γ2(η), (6.11)

Γ1(η) := E [Γ1(W, η)] := E [(D – X ′ν) (Z′δ + X ′γ – X ′ν)] ,
Γ2(η) := E [Γ2(W, η)] := E [(Y – X ′θ) (Z′δ + X ′γ – X ′ν)] .

We summarize the estimation algorithm proposed by Chernozhukov et al.
(2015b) before studying its theoretical properties, which follow from those estab-
lished for the affine-quadratic model (5.3):
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– Step 1: Perform a Lasso or post-Lasso regression ofD on (X,Z) to obtain γ̂ and
δ̂ via (FS);

– Step 2: Perform a Lasso or post-Lasso regression of Y on X to obtainθ̂ via (6.4);
– Step 3: Perform a Lasso or post-Lasso regression of D̂ = X ′γ̂+Z′δ̂ on X to obtain
ν̂ via (6.3);

– Step 4: The estimator of η0 is η̂ = (θ̂, ν̂, γ̂,δ̂)′;
– Step 5: Finally, the estimator of τ is

τ̌ = argmin
τ∈R

‖
‖√nM̂(τ, η̂)‖‖

2 = [Γ̂1(η̂)′Γ̂1(η̂)]
–1 Γ̂1(η̂)′Γ̂2(η̂).

Note that step 5 consists of performing two-stage least squares (2SLS) using
the residuals Y – X ′θ̂ from step 2 as the dependent variable, the residuals D –
D̂ from step 1 as the covariate, and the residuals D̂ – ν̂ ′X from step 3 as the
instruments.

Using the formulation (6.11) of the model as an affine-quadratic model
(see Assumption 5.3) and if the assumptions of Theorem 5.1 are satisfied,
namely if

1. the model is parsimonious, i.e., assumption 6.2 with η0 = ηm0 ;
2. the assumption (ORT) ∂ηM(τ0, η0) = 0 is satisfied;
3. we assume high-quality estimation of the nuisance parameter;
4. the condition of growing number of relevant components s with the number

of observations s log(p)/√n → 0, where p := pz + px, is satisfied;

then we can apply Theorem 5.1 and obtain directly the asymptotic normality

√n (τ̌ – τ0) →  (0, σ2Γ), (6.12)

where σ2Γ := E[ψ(W, τ0, η0)2]/E[Γ1(W, η0)]2.

Remark 6.2 “Small number”of controls

In the case of a “small number” of controls (see Belloni et al., 2012), θ0 is no longer a “nui-
sance” parameter in the sense that no selection needs to be made on X. In this case, we can
take A(W) = E[D|Z, X], as the (ORT) condition does not need to be satisfied with respect to
θ, i.e., we can have ∂θM(τ0, η0) ≠ 0.
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Remark 6.3 Approximate sparsity

If weuse the assumptionof approximate sparsity 6.2,wemust impose the following assump-
tion, and the result (6.12) is still valid (see Chernozhukov et al., 2015b).

Assumption 6.3 (Estimation of nuisance parameters with high quality and approximate
sparsity) Wemake Assumption 6.2 and assume that η̂ satisfies, with high probability,

‖η̂‖0 ≤ s,

‖η̂ – ηm0 ‖2 ≤ √
s
n

log p,

‖η̂ – ηm0 ‖ 1 ≤ √
s2

n
log p.

6.3 Simulations

Data generating process (DGP). We use a DGP similar to that of Chernozhukov
et al. (2015a): (Yi,Di,Zi,Xi)ni=1 i.i.d. and satisfying

Yi = τ0Di + X′
iβ0 + 2εi

Di =X′
iγ0 + Z′iδ0 + Ui

Zi =ΠXi + αζi,

where α = 0.125 and

⎛
⎜
⎜
⎝

εi
ui
ζi
xi

⎞
⎟
⎟
⎠

~  ⎛
⎜
⎜
⎝

0,
⎛
⎜
⎜
⎝

1 0.6 0 0
0.6 1 0 0
0 0 Ipz 0
0 0 0 Σ

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

,

where

– Σ is a px × px matrix with Σkj = (0.5)| j–k| and Ipz is the identity matrix of size
pz × pz;

– The number of controls is set to 100, the number of instruments to 50, and the
number of observations to 300;
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Table 6.1 Simulation results for estimation of τ0

Estimator:
Naive post-selection Double selection Oracle

(1) (2) (3)

Bias 0.07 0.01 0.00
Root MSE 0.28 0.30 0.05
MAD 0.19 0.20 0.03

Note: Based on 2000 simulations with the following parameters: n = 300,
px = 100, pz = 50, K = 3, τ0 = 1.5. Root MSE: root mean square error; MAD:
mean absolute deviation.

– The most interesting part of the DGP is the form of the coefficients β0, γ0, and
δ0:

β0j = {
1/4, j < 4

0, otherwise
,

γ0 = β0, and δ0j = 3/j2. We are in a framework where approximate sparsity
holds for these two equations.

– Π = [Ipz , 0pz×(px–pz)] and τ0 = 1.5.

We compare here three estimators:

1. An “oracle” estimator, where the nuisance parameter coefficients are known,
and where we run a standard IV regression of Yi – E[Yi|Xi] on Di – E[Di|Xi]
using the oracle ζ′iδ0 as an instrument;

2. A naive non-orthogonal estimator, where we use the Lasso regression of D on
(X,Z) to select the set of controls and instruments that enter the instrumental
equation: IDX = { j : δ̂j ≠ 0}, IDZ = {j : δ̂j ≠ 0}.We perform a Lasso regression of Y
on X to select the set of controls that enter the outcome equation: IYX = { j : δ̂j ≠
0}. We then perform the 2SLS regression of Y on D and the selected controls
and two selected sets IDX ∪ IYX and IDZ ;

3. A double selection estimator using Lasso as described in Section 5.

Table 6.1 and Figure 6.1 present the results of this simulation exercise. They show
that the naive post-selection estimator has a larger regularization bias.

6.4 Applications

6.4.1 Logistic demandmodel

We present the logistic demand model in a context where only market share data
is observed. We refer to the important articles by Berry et al. (1995), Berry (1994),



High dimension and endogeneity 109

0.4

Naive

de
ns

ity

Immunized Oracle

0.3

0.2

0.1

0.0
–2 0
Treatment effect Treatment effect Treatment effect

2

de
ns

ity

0.4

0.3

0.2

0.1

0.0
–2 0 2

de
ns

ity

0.4

0.3

0.2

0.1

0.0
–2 0 2

Figure 6.1 Distribution of τ̂ – τ0
Note: See Table (6.1) .

and Nevo (2001) for more details on this classic context. The model describes the
demand for a product in the space of characteristics. This description is based on
the idea that a product can be described by a number of its characteristics and that
consumers assign value to them. For example, for a car: efficiency, fuel type, engine
power, etc. We assume to know the set of all possible choices for the consumer, who
chooses among J products the one thatmaximizes their utility. The individual utility
for choosing product j ∈ {0, . . . , J} is random from the econometrician’s point of
view and is modeled by

ui,j = X ′
j β0 – τ0Pj + ζj + εi,j, (εij, ζj) ⊥⊥ Xj, (6.13)

where εij ~ F(·) = exp(–exp(–·)) is an idiosyncratic component that follows a type I
extreme value distribution; and ζj is a component representing the average market’s
specific taste for product j, which is arbitrarily correlated with the price. This gives
the expression for the choice probabilities as follows

Pi,j =
exp (δj)

1 +∑J
k=1 exp (δk)

, δj = XTj β0 – τ0Pj + ζj. (6.14)

Moreover, the econometrician does not observe individual choices, but only the
market shares of product j: sj,t = Qjt/Mt in market t, where Mt and Qj,t are respec-
tively the total number of households and number of people choosing product j in
this market. This gives

sj,t =
exp (X ′

j,tβ0 – τ0Pj,t + ζj,t)
1 +∑J

k=1 (X ′
k,tβ0 – τ0Pk,t + ζk,t)

.
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Thus, using sj,t/s0,t and assuming that market shares are non-zero, we obtain

log(sj,t) – log(s0,t) = X ′
j,tβ0 – τ0Pj,t + ζj,t. (6.15)

However, the price may be correlated with the unobserved component ζj,t, such
that OLS estimation would bias τ0 towards zero. We use the instrumental equation:

Pj,t = Z′j,tδ0 + X ′
j,tγ0 + uj,t, E [uj,t|Zj,t,Xj,t] = 0. (6.16)

Here, the controls include a constant and several covariates. Berry et al. (1995)
(BLP) suggest using the so-called “BLP instruments,” namely the characteristics of
other products, which may satisfy an exclusion restriction, for any j′ ≠ j and t′, as
well as any function of these characteristics. The justification is that if a product is
close in the characteristic space to its competitors, this can have an impact on mar-
gins, and then on prices – however, cost-based instruments should be preferred, but
they are rarely available. Thus, we are left with a set of potentially high-dimensional
instruments to address the endogeneity of prices Pj,t.

Berry et al. (1995) solve this problem by considering sums of product character-
istics excluding product j produced by firm f, namely, for the k-th characteristic of
this product:

Zk,j,t = ( ∑
j′≠j,j′∈f

Xk,j′,t, ∑
j′≠j,j′∉f

Xk,j′,t) ,

where f is the set of products manufactured by firm f. But the tools developed
in the previous section allow for broader possibilities. Chernozhukov et al. (2015a)
apply these techniques to revisit the results of Berry et al. (1995). We apply the same
tools to a (semi-synthetic) dataset fromNevo (2001) on the demand for ready-to-eat
cereals (see the dataset cerealps3.csv).

We augment the set of potential controls with all first-order interactions of the
baseline variables, quadratics and cubics in all continuous baseline variables, and
a time trend that yields a total of 24 “augmented” controls. Then sums of these
characteristics define potential instruments following Berry et al. (1995), which
yields 48 potential instruments. Table 6.2 presents the results using all constructed
instruments (labeled “z1-z20”), and in the “augmented 2SLS selection,” the squares
and cubes of all these instruments. The identity of the controls and the instru-
ments selected in the “augmented” set reveals important non-linearities missing
from the base set of variables. Moreover, the selection method provides more plau-
sible estimates for the important quantities of the model, such as price elasticities:

∂sj
∂Pk

Pk
sj

= { –τ0Pj(1 – Sj) if j = k
τ0Pksk otherwise .
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Table 6.2 Estimation of τ0

Price
coefficient

Standard
error

Number of
inelastic products

Estimator without selection

OLS Base –9.63 0.84 586
2SLS Base –9.48 0.87 990

2SLS Estimator with “double selection”
2SLS Base with Selection –11.29 0.93 224
2SLS Augmented with selection –11.44 0.91 212

Aside from the classical problems posed by these specific forms (price elasticities
nearly proportional to prices, symmetry of cross-price elasticity for the products),
facing inelastic demand is also inconsistent with a profit-maximizing price choice
in this framework. Therefore, theory predicts that the demand should be elastic for
all products, which is not the case with the estimations without selection in Table
6.2. The estimators with selection provide much more plausible estimates in this
regard.

6.4.2 Instrument selection for estimating returns to education

We now revisit the analysis of returns to education conducted in Card (1993),
where we show how the results are modified when we expand the set of
possible instruments. David Card first considers the model with instrumental
variables:

Y = τ0D + X ′β0 + ε, ε ⊥⊥ X

D =Z′δ0 + X ′δ0 + u, u ⊥⊥ (Z,X),

where Y denotes the logarithm of the individual’s weekly wage,D denotes education
(in years), X represents a vector of controls, potentially of high dimension, and Z a
vector of instrumental variables for education.

In this example, the instruments are the two indicators that determine if a sub-
ject grew up near a two-year or a four-year high school. It also suggests using IQ as
an instrument for the results of the Knowledge of World Work (KWW) test, when
added as a control. The control variables X consist of: age and work experience at
the time of the survey, the number of years of education of the subject’s father and
mother, an indicator of the family situation at the age of 14 (whether the subject lived
with both parents or with a single mother), nine indicators related to the region of
residence, an indicator coding whether the subject lives in a standard metropolitan
statistical area (SMSA) and another indicatingwhether the subject lives in the south,
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Table 6.3 Estimation of returns to education τ0

Nb. of Estimated Std. Fuller Fuller std.
instruments error estimate error

OLS 0.065 0.0062
2SLS 3 0.115 0.033 0.119 0.034
2SLS 66 0.075 0.019 0.083 0.025

DML,
post-Lasso

66 0.102 0.031

Note: Number of observations: 1,604 and number of controls: 19 including KWW. “Fuller” refers to
Fuller (1977). OLS: ordinary least squares, 2SLS: two-stage least squares, DML: double machine
learning.

an indicator to determine if the subject’s race is Black, marital status at the time of
the survey, an indicator to determine if the subject had a library card at the age of
14, the results of the KWW test, and interactions. Two options are possible with-
out using selection: either use these four instruments, or interact these instruments
with the controls, resulting in 66 instruments in the latter case. In this second case,
we must correct the use of many instruments using the estimator of Fuller (1977),
implemented in the R package ivmodel.

The results presented in Table 6.3, using the code provided on GitHub, show that
the post-Lasso selects five instruments from the 66 potential ones, thus providing
a relevant selection without prior knowledge. Comparing the standard errors in
the case of Lasso with the Fuller estimates with 66 instruments only shows a slight
increase.

6.5 Summary

Key concepts

Endogeneity, instrumental variables, optimal instruments, double machine learning,
Neyman-orthogonal, sparse model.

Additional references

The framework presented here follows the formalization of Chernozhukov et al. (2015a)
and Chernozhukov et al. (2017), but reading Belloni et al. (2012) will provide a slightly dif-
ferent perspective on these methods. From a practical standpoint, the R package hdm is
complemented by vignettes available at cran.r-project.org/web/packages/hdm/vignettes/
hdm.pdf, which summarize the essential results and provide empirical illustrations. Finally,
Angrist and Frandsen (2022) propose several

http://cran.r-project.org/web/packages/hdm/vignettes/hdm.pdf
http://cran.r-project.org/web/packages/hdm/vignettes/hdm.pdf
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using estimators based on the sparsity assumption for causal effect estimation with a large
number of instruments, where the first-stage equation may not satisfy this assumption. In
this chapter, we studied the Lasso as a regularization technique in this context, but there are
other regularizations that are more suitable in these situations where the sparsity assump-
tion seems strong, such as Ridge penalization, spectral cut-off, or principal component
approaches (see, e.g., Carrasco, 2012).

Questions

1. Justify why, in the context of treatment effect estimation with endogeneity, the
problem of numerous instruments frequently arises. What is the solution that we
have described in this chapter?

2. Show that the orthogonality condition (ORT) is not satisfied if the termE[D|X] is not
present in Equation (6.9).

3. Show that when there are no controls X (taking Z = ζ ), we have Λ∗ = σ2Γ, where with
Equation (3.15), Λ∗ = σ2E [E [D|Z]2]–1. Conclude that this optimal IV estimator of τ0
estimated by Lasso or post-Lasso achieves the efficiency bound. This extends to the
“small number” of controls.

4. In the context of Equation (6.11), verify that the orthogonality assumption (ORT) is
satisfied: ∂ηM(τ0, η0) = 0.

5. Show that for the model (6.13), we obtain (6.14).

Codeanddata

ThecourseʼsGitHub repository contains thedifferentdatasets andcodesused in this section.
The code SimulationsIV.R provides the simulations from Section 6.3. The code NevoIV.R
and the data cerealps3.csv detail the application to demand estimation in Section 6.4.1.
Chernozhukov et al. (2015a) apply these techniques to revisit the results of Berry et al. (1995),
and the data is available in the R package hdm. The code CardIV.R is associated with the
application in Section 6.4.2. The courseʼs GitHub repository also contains a code Bonu-
sAngristKrueger.R that reproduces the application of the instrument selection techniques
developed in the previous sections to the dataset NEW7080.dta from Angrist and Krueger
(1991), performed in Belloni et al. (2010), which can be found at the following address:
economics.mit.edu/faculty/angrist/data1/data/angkru1991.

6.6 Additional remark

Another derivationof themoment equation (6.6) usingprojections. Consider the
space of random variables that are square
space (Ω,,P), which we denote by L2(P).

http://economics.mit.edu/faculty/angrist/data1/data/angkru1991
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with the inner product < X,W >= E[XW] and the norm ‖X‖ = E[X2]1/2. Define
pX(W) = E[W|X], the orthogonal projection of W onto the subspace of L2(P),
{ξ = h(X), E[h(X)2] < ∞} of square integrable random variables that aremeasurable
with respect to X. Applying mX(W) = W – pX(W) = W – E[W|X] to (6.1), we obtain
the equations:

mXY =mXDτ0 +mXε, E [ε|X,Z] = 0, (6.17)

where

mXD = D – E [D|X] = D – X ′ν0,

mXY = Y – E [Y|X] = Y – X ′(ν0τ0 + β0).

For estimation, we use the following implication of (6.1):

E [mXε (mXpX,ZD)] = 0, (6.18)

where

mXpX,ZD = mXE[D|X,Z]

= E[D|X,Z] – E[E[D|X,Z]|X]

= X ′γ0 + Z′δ0 – X ′ν0.

Note that if D were exogenous, (6.18) would simply be E [mXεmXD] = 0. In the
current context, following the same idea as the optimal instrument, we should use
E [εE [D|X,Z]] = 0. However, to be able to handle errors arising from selection in
the estimation of the covariates X, we need to subtract the term E [D|X] to obtain a
robust estimator, which gives

E [(ε – E [ε|X]) (E [D|X,Z] – E [D|X])] = 0

hence Equation (6.18). The moment condition (6.17) can be rewritten as (6.6) and
we also have

ψ(W, τ0, η0) = (ρy – ρdτ0) (Z′δ0 + X ′γ0 – X ′ν0)
= ε (Z′δ0 + X ′γ0 – X ′ν0) . (6.19)



Chapter 7
Going further

The objective of this chapter is to present specific developments of the tools intro-
duced in the previous sections, particularly focusing on the properties of the Lasso.
The Lasso and the choice of its penalty have been presented so far in the case of
non-Gaussian errors or using cross-validation in a more general framework, but
with less strong theoretical foundations. Section 7.1 shows that it is also possible
to theoretically justify a choice of penalty in the case of non-Gaussian errors and
provides the intuition behind this choice, based on the theory of self-normalized
sums. Section 7.2 then analyzes the contribution of sample-splitting, especially for
relaxing certain assumptions on the growth of the number of variables that can be
included as a function of the sample size. We have presented the double selection
procedure, which allows for inference on a coefficient in this high-dimensional con-
text. This procedure can be adapted to perform joint inference on a small number
of coefficients (see Section 4.2 in Chernozhukov et al., 2021). Another procedure
called “desparsification,” equivalent at the first order, uses a bias correction in order
to obtain simultaneous confidence regions for a small number of coefficients. In
order to present the different possible approaches, this procedure is introduced in
Section 7.3. It is then used, for example, in Section 11.3.1 to test Granger causal-
ity. Finally, the Lasso has so far been introduced in an i.i.d. framework. However,
this regularization and way to select instruments can also be extended to panel data,
which we present in Section 7.4. Finally, we study an application of these tools to
estimate the effect of the number of police officers per capita on crime rates.

7.1 Estimationwithnon-Gaussian errors

Wehave already described the properties of the Lasso assuming that the error term is
Gaussian. Belloni et al. (2012) relaxed this assumption while also describing how to
choose the parameter λ in a more general case. We describe their strategy. Consider
the selection linear model, with a high number of covariates Zi:

Di = Z′iδ0 + εi, E [εi|Zi] = 0 (7.1)

and the Lasso estimator of δ0,

δ̂ ∈ argmin
δ∈Rp

1
n

n
∑
i=1
(Di – Z′iδ)

2 + λ
n
‖
‖Γ̂δ

‖
‖1, (7.2)
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where ‖‖Γ̂δ
‖
‖1 = ∑p

j=1 ||Γ̂jδj||. The penalty Γ̂ ∈ p,p(R) is an estimator of the weights
of the “ideal” penalty:

Γ̂0 = diag(γ̂01, . . . , γ̂0p), where γ̂0j =
√√
√

1
n

n
∑
i=1

Z2
i,jε2i . (7.3)

Γ̂0 are the weights for the “ideal” penalty in the sense that they depend on the error
εi, which is not actually observed. Thus, in practice:

1. We set λ = 2c√nΦ–1 (1 – 0.1/(2p log(p ∨ n))), where c = 1.1 and Φ–1(·) is the
inverse of the standard normal cumulative distribution function.

2. We estimate the ideal penalty in two steps, 1) using weights in the “conserva-
tive” penalty and 2) by inserting the resulting estimated residuals in place of εi
to obtain more suitable weights.

Assumption 7.1 (Moment conditions). Assume that

(i) maxj=1,...,p E [D2
i ] + E [D2

i Z2
j,i] + 1/E [Z2

j,iε2i ] ≤ K1;
(ii) maxj=1,...,p E [Z3

j,iε3i ] ≤ K2, where K1,K2 < ∞.

Under these moment conditions, Theorem 7.1 below provides convergence rates
for the Lasso with non-Gaussian and heteroscedastic errors, relaxing the assump-
tions made in Theorem 4.1. Of course, these assumptions are more realistic in most
applications.

Theorem 7.1 (Convergence rates for the Lasso with non-Gaussian and heteroscedas-
tic errors, Theorem 1 in Belloni et al., 2012) Consider the model (7.1), the sparsity
assumption |δ0|0 ≤ s, and Assumptions 4.4 and 7.1. Let ε > 0, there exist C1 and
C2, such that the Lasso estimator defined in (7.2) with tuning parameter λ =
2c√nΦ–1 (1 – α/(2p)), where α → 0, log(1/α) ≤ c1 log(max(p, n)), c1 > 0, and
with asymptotic weights for the penalties l γ̂0 ≤ γ̂ ≤ uγ̂ 0 where l

p⟶ 1, u
p⟶ 1

satisfies, with probability 1 – ε

‖
‖δ̂ – δ0‖‖1 ≤ C1

κ2
C√

s2 log(max(p, n))
n , (7.4)

where κC := κC (
1
n∑

n
i=1 ZiZ′i) and

C =
‖
‖γ̂

0‖
‖∞

‖
‖1/γ̂

0‖
‖∞

uc + 1
lc – 1 .
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Important intuitions forunderstandingTheorem7.1: the regularization event
and concentration inequality. The proof of the Lasso with Gaussian errors, in step
2 of the proof of Theorem 4.1, is based on the fact that with a probability of at least
1 – α, we have the following regularization event:

{max
j=1,…,p

|
|
|
1
n

n
∑
i=1

εiXij
|
|
|
≤ λn

4 } .

To ensure this, we used Markov’s inequality, conditioned on X1, . . . , Xn, and the
concentration inequality (see Lemma 4.6), which, for p Gaussian random variables
ξj ~  (0, σ2j ), ensures that

E [max
j=1,…,p

|ξj|] ≤ max
j=1,…,p

σj√2 log(2p).

In the general case of Lasso with non-Gaussian and heteroskedastic errors, to
choose λ and the weights γ0, we generalize these ideas. We ensure that we have the
regularization event with high probability

{max
j=1,...,p

|
|
|
∑n

i=1 Zi, jεi/√n
γ̂0j

|
|
|
≤ λ

2c√n
}, (7.5)

using the following concentration inequality applied toUi,j := Zi,jεi. This guarantees
that there exists a finite constant A > 0 such that

P(max
j=1,...,p

|||||

∑n
i=1 Ui,j/√n

√∑n
i=1 U2

i,j/n

|||||
≤ Φ–1 (1 – α

2p)) ≥ 1 – α (1 + A
ln
), (7.6)

where ln → ∞. This result is obtained from the moderate deviation theorems for
self-normalized sums (see Lemma 5 in Belloni et al., 2012 and Belloni et al., 2018).
The idea is to choose the weights Γ̂0 in the penalty in such a way that the term:

∑n
i=1 Zi,jεi/√n

γ̂0j

behaves like a standard normal random variable. In this case, we can obtain the
desired condition (7.5) by letting λ/(2c√n) be sufficiently large to dominate themax-
imum of p standard normal random variables with high probability. Belloni et al.
(2012) show that choosing (γ0j )2 = Var (Zi,jεi) achieves this idea, even if the εi’s are
not i.i.d. Gaussian. This gives (7.6). Then, Lemma 7.1 below ensures that, on this
regularization event, the desired inequalities hold.

Lemma 7.1 (Lemma 6 in Belloni et al., 2012). Consider the model (7.1), the sparsity
assumption |δ0|0 ≤ s, Assumptions 4.4 and 7.1. If the penalty dominates the score in
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the sense that
γ̂0j λ
n ≥ max

1≤j≤p
2c
|
|
|
1
n

n
∑
i=1

Zi,jεi
|
|
|
,

or equivalently (7.5), then we obtain

‖
‖Γ̂

0 (δ̂ – δ0)‖‖1 ≤ (1 + c0)
κc0

(u + 1
c )

λs
nκc0

, (7.7)

with c0 = (uc + 1)/(lc – 1).

Bootstrap-after-cross-validation in generalized linear models. The selection
method (7.2) firstly might remain conservative, as can be seen from (7.6), and sec-
ondly can be extended to generalized linear models, where one is interested in the
true value δ0, which is given by the solution to

δ0 = argmin
δ∈δ

E[m(Z′δ, Y)],

wherem : R× → R is a known function that is convex in its first argument,Z∈Rp

is a (high-dimensional) vector of regressors, Y is the outcome variable or vector, and
Δ is a convex parameter space. This more general context includes in particular the
binary response model (see example in Exercise 15.2), or the logistic calibration of
balancing. Denote by ∂1m the derivative of the loss function m with respect to its
first argument. Under some sparsity assumption, Chetverikov and Sørensen (2022)
show that for the following adapted ℓ1 penalized M-estimator:

δ̂ ∈ argmin
δ∈δ

1
n

n
∑
i=1

m(Z′iδ, Yi) +
λ
n
‖δ‖1,

if we can choose λ so that

λ
n ≥ max

1≤j≤p
c
|
|
|
1
n

n
∑
i=1

Zi,j∂1m(Z′iδ0, Yi)
|
|
|
,

we get a bound similar to (7.7). If the residuals ∂1m(Z′iδ0, Yi) were known, this would
suggest setting λ = cnq1–α, where q1–α is the 1 – α quantile of the absolute value of
the maximum of the scores

max
1≤j≤p

|
|
|
1
n

n
∑
i=1

Zi,j∂1m(Z′iδ0, Yi)
|
|
|
.

While this choice is not feasible, Chetverikov and Sørensen (2022) show that
a bootstrap-after-cross-validation procedure works theoretically and in prac-
tice, where 1) we obtain a preliminary estimator θ̂cv based on λ̂cv selected by
cross-validation, 2) then use this to estimate the 1 – α quantile of the score using
Gaussian multiplier bootstrap, i.e., using the 1 – α quantile of
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max
1≤j≤p

|
|
|
1
n

n
∑
i=1

eiZi,j∂1m(Z′i θ̂cv, Yi)
|
|
|
,

where {ei}i=1,...,n are independent standard normal random variables that are inde-
pendent of the data. The key is to prove that cross-validation provides a sufficiently
good estimator of the residuals ∂1m(Z′iδ0, Yi). Under appropriate regularity condi-
tions, this leads to convergence rates similar to those in Theorem 7.1.

7.2 Sample splitting

We analyze how to use sample splitting to relax the assumption (4) of a growing
number of non-zero components. We replace it with the weaker condition:

s log(max(p, n))
n → 0. (7.8)

As in Belloni et al. (2012), we consider the case of two samples, but this can easily
be extended to the case of K samples.

Let a and b be the two samples of sizes na = ⌊n/2⌋ and nb = n – na, jc = {a, b}⧵j
for j ∈ {a, b}, and define the estimator based on sample splitting as follows:

τ̌ = [
na
∑
i=1

Γ1 (Wa
i , η̂b) +

nb
∑
i=1

Γ1 (Wb
i , η̂a)]

–1

× ((
na
∑
i=1

Γ1 (Wa
i , η̂b)) τ̌a + (

nb
∑
i=1

Γ1 (Wb
i , η̂a)) τ̌b), (7.9)

which uses

τ̌j = [
1
nj

nj
∑
i=1

Γ1 (Wj
i , η̂

jc)]
–1

1
nj

nj
∑
i=1

Γ2 (Wj
i , η̂

jc) for j ∈ {a, b}.

This estimator combines the two treatment effect estimators based on each sample,
each using a preliminary estimator of the nuisance parameter based on the other
sample only.

Theorem 7.2 (Asymptotic normality of the split-sample immune estimator, Theorem
7 in Belloni et al., 2012) The immune estimator τ̌ defined by (7.9) in the affine-
quadraticmodel (5.3), under Assumption 5.1 and the growth condition (7.8), using
a first-stage nuisance estimator satisfying Assumption 5.2, is asymptotically normal:

√n(τ̌ – τ0) →  (0, σ 2
Γ ),

with σ 2
Γ := E[ψ(Wi, τ0, η0)2]/E[Γ1(Wi, η0)]2.
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7.3 Joint inferenceonagroupof coefficients

We start by describing the link between the double selection procedure, introduced
in Part 3, and the bias correction procedure of Lasso (or desparsification) introduced
by Zhang and Zhang (2014) and Van de Geer et al. (2014). This correction then
allows us to establish in Section 7.3.2 the joint asymptotic normality of the lasso
estimator for a small number of coefficients once the bias has been corrected. This
in turn allows one to derive simultaneous confidence bands for these coefficients
rather thanmarginal ones when the double Lasso procedure introduced in Chapter
4 is applied coefficient by coefficient. The latter is potentiallymisleading as the num-
ber of coefficients increases. Chernozhuokov et al. (2013); Belloni et al. (2015) also
propose a method for making inference on a group of coefficients based on the dou-
ble selection estimation procedure described in Part 3 (see respectively Bach et al.,
2018; Chernozhukov et al., 2021, for a survey and extension to time and space).
In order to present multiple possible approaches, we will instead describe here the
approach of explicit bias correction, after establishing the link between the double
selection and desparsification procedures.

7.3.1 Double selection and Lasso desparsification

Consider in an i.i.d. sample (Yi,Xi)i=1,…,n and the following model:

Y = X ′β0 + ε, (7.10)

where ε is such that E[ε] = 0, E[ε2] = σ2 < ∞, E[ε|D,X] = 0, and p is the dimen-
sion of X, which is allowed to be much larger than n. The parameter of interest is
the coefficient β0,k for k ∈ {1, . . . , p}. This model has been studied in Section 4.5;
wherewe presented the double selectionmethod introduced byChernozhukov et al.
(2018). Remark 3.4 details this method in three steps, which leads to the following
expression (7.11) for the estimator of β0,k:

β̌k =
n–1∑n

i=1(Yi – X ′
i,–kβ̂–k)(Xi,k – X ′

i,–kγ̂)
n–1∑n

i=1 Xi,k(Xi,k – X ′
i,–k γ̂)

, (7.11)

where β̂–k is an estimator of β–k, the coefficient vector of the post-Lasso regression
of Y on X, from which the k-th component has been removed, and γ̂ is an estimator
of γ, the coefficient of the post-Lasso regression of Xk on X –k. This procedure is
equivalent at first order to the following procedure:

1. We regress Y on (Xk,X–k) using a (post-)Lasso.We denote by β̂[1] the associated
estimator.

2. We regress Xk on X–k using a (post-)Lasso. We denote by γ̂[1] the associated
estimator and ν̂ := Xk – X ′

–kγ̂[1] the residual.
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3. We use an IV regression of Y–X ′
–kβ̂

[1]
–k on Xk using ν̂ as an instrument, leading

to the final estimator of β0,k:

β̌[1]
k =

n–1∑n
i=1(Yi – X ′

i,–kβ̂
[1]
–k )(Xi,k – X ′

i,–kγ̂[1])
n–1∑n

i=1 Xi,k(Xi,k – X ′
i,–kγ̂[1])

, (7.12)

which has the same form as (7.11).

This procedure is described in Belloni et al. (2014). Developing (7.12) and using
the definition of ν̂i, we can rewrite β̌[1]

k as a correction of the bias of the initial
estimator β̂[1] (Zhang and Zhang, 2014; Van de Geer et al., 2014):

β̌[1]
k = (1n

n
∑
i=1

Xi,kν̂i)
–1 1

n

n
∑
i=1

ν̂iYi – ∑
m≠k

β̂[1]
m
n–1∑n

i=1 Xi,mν̂i
n–1∑n

i=1 Xi,kν̂i  
Bias correction

. (7.13)

Let us describe the intuition behind (7.12). Using the notations from Theorem 4.2,
letX = [X1, . . . ,Xp] be the n × pmatrix of column vectorsXk of size n × 1 and y be the
n × 1 vector of Yi. Using the Frisch–Waugh–Lovell theorem (see Theorem 4.2) and
denoting by νk = X–kXk the projection of Xk onto the orthogonal complement of
the space generated by the columns of X –k, it is traditionally known that β0,k can be
estimated via

β̂k = (X k
′νk)–1νk′y.

The problem when considering p > n comes from the fact that the projection νk
is no longer defined. The “desparsification” proposed by Zhang and Zhang (2014)
therefore consists in correcting νk for the bias that is generated.

7.3.2 Asymptotic normality of the bias-corrected estimator

We now describe how to use this correction to perform inference on a group G ⊆
{1, . . . , p} of coefficients β0,G = {β0,j, j ∈ G}. The definition of the Lasso estimator

β̂ = argmin
β∈Rp

1
n

n
∑
i=1

(Yi – X ′
iβ)2 + λ ‖β‖1,

implies that β̂ satisfies the Karush–Kuhn–Tucker (KKT) conditions:

– 1
n

n
∑
i=1

Xi(Yi – X ′
i β̂) +

λκ̂
2 = 0, (7.14)

||κ̂||∞ ≤ 1, κ̂k = sign(β̂k) if β̂k ≠ 0.



122 Machine Learning for Econometrics

The model (7.10) yields

–1
n

n
∑
i=1

Xi(Yi – X ′
i β̂) = 1

n

n
∑
i=1

XiX ′
i(β̂ – β0) –

1
n

n
∑
i=1

Xiεi.

Using Σ̂ = ∑n
i=1 XiX ′

i/n, we can rewrite the optimality condition (7.14) as:

Σ̂(β̂ – β0) +
λκ̂
2 = 1

n

n
∑
i=1

Xiεi.

If we have a good approximation Θ̂ of the inverse of Σ̂, then we have the following
decomposition:

β̂ + Θ̂λκ̂
2  

Estimator with
bias correction β̌

– β0 = Θ̂ (1n
n
∑
i=1

Xiεi)
  

Asymptotically normal term

– Δ
√n


Negligible term

,

where
Δ = √n (Θ̂Σ̂ – I) (β̂ – β0)

is an error term related to the approximation of the inverse Θ̂Σ̂ ≠ I. It can be shown,
under certain assumptions, that Δ is asymptotically negligible. Under these con-
ditions, using the optimality condition (7.14), the bias of the estimator β̂G for the
components βG of group G is

BG = Θ̂G (
1
n

n
∑
i=1

Xi(Yi – X ′
i β̂)) , (7.15)

whereΘG is the sub-matrix ofΘ corresponding to the coefficients of groupG. Thus,
the bias-corrected estimator β̌G = β̂G + BG has a similar form as (7.12).

With Gaussian errors ε ~  (0, σ2ε I) and using some assumptions about the
growth rate of the number of regressors (s2 log(p)2/n → 0), Van de Geer et al.
(2014) (Theorem 2.2) show that in this context the Lasso estimator is asymptotically
Gaussian, for any group G ⊆ {1, . . . , p},

√n (β̌G – β0,G)
d⟶  (0,ΞG), (7.16)

where ΞG is the asymptotic variance

ΞG = lim
n→∞

Var ( 1
√n

n
∑
i=1

εiΘGXi).

Note that Breunig et al. (2020) relax the assumption of Gaussian errors and use this
bias correction of the Lasso to propose an alternative method to the immunization
procedure developed in the instrumental variable models of Section 6. They obtain
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an IV estimator based on the Lasso that is asymptotically normal, which also allows
for constructing simultaneous confidence regions in this context. We use this cor-
rection in a time series framework in Section 11.3.1 in order to test Granger causality
(see Babii et al., 2019).

We now discuss the method for estimating the inverse of Σ, denoted Θ̂, initially
proposed byMeinshausen and Bühlmann (2006). This method uses the fact that for
every k ∈ {1, . . . , p}, the matrix Σ = E[XX ′] can be partitioned

( Σk,k Σ–k,k
Σ–k,k Σ–k,–k

),

after rearranging the rows. The proposed estimator consists of two steps. First, we
regress for k ∈ {1, . . . , p}, the component Xk on the others using a Lasso:

γ̂k = arg min
γ∈Rp–1

(1n
n
∑
i=1

(Xi,k – X′i,–kγ)2 + λk‖γ‖1) .

Second, we consider the estimator Θ̂ := B̂–2Ĉ of the inverse of Σ, where

Ĉ =
⎛
⎜
⎜
⎝

1 –γ̂1, 2 . . . –γ̂1, p
–γ̂1, 2 1 –γ̂2, p

: : :
–γ̂p, 1 –γ̂1, p . . . 1

⎞
⎟
⎟
⎠

,

where we denote the (p – 1) components of the vector γ̂k = {γ̂k,j : j = 1, . . . , p,
j ≠ k}, B̂2 = Diag(b̂2

1, . . . , b̂2
p), and b̂2

k = ∑n
i=1(Xi,k –X ′

i,–kγ̂k)2/n+λk‖γ̂k‖1/2. The useful
property of this approximation of the inverse is that we control explicitly over the
deviation between Σ̂Θ̂ and the identity matrix in infinite norm, as a function of b̂
and the penalties λk (see (10) in Van de Geer et al., 2014).

7.4 Regularization and instrument selection for panel data

In this section, we briefly show how to use the lasso and the regularization pro-
cedures from Section 6.2 when the observations are identically distributed across
individuals but correlated over time. If there is dependence, this should be taken into
account in the selection procedure (7.2), as it will lead to a larger choice of penalty
parameters, and thus fewer selected variables, than if this dependence is neglected.
One way to take into account this dependence is to use the a variant of the lasso,
the cluster-Lasso estimator developed by Belloni et al. (2016), which adapts to the
clustered covariance structure. In the following, the results hold for n → ∞ and fixed
T, where n is the number of individuals and T is the number of observed periods,
and with a joint asymptotic n → ∞ and T → ∞.
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Consider the following panel data model:

Yit = τ0Dit + ei + εit (7.17)

Dit = Z ′
itδ0 + fi + uit, (7.18)

where E[εituit] ≠ 0 but E[εit|Zi1, . . . ,ZiT] = E[uit|Zi1, . . . ,ZiT] = 0, and where we
have a large number pz of instruments Zit satisfying pz ≫ nT. For simplicity, we do
not consider cases where the number of controls is fixed or high-dimensional, but
the ideas of double selection from Section 6.1 can be directly extended here. We use
the classical within transformation:

Ÿit = Yit –
1
T

T
∑
t=1

Yit,

and respectively Z̈it and ε̈it are the within transformations of Zit and εit, to partially
remove the fixed effects in both equations. This reduces the model to

Ÿit = τ0D̈it + ε̈it (7.19)

D̈it = Z̈ ′
itδ0 + üit. (7.20)

We then use the sparsity assumption ‖δ0‖0 ≤ s and the cluster-Lasso regression
of D̈it on Z̈it to estimate δ0. Finally, to estimate τ0, we use the orthogonal moment
condition:

E [ 1T
T
∑
t=1
(Ÿit – τ0D̈it) Z̈ ′

itδ0] = 0,

which satisfies (5.1) because there are no controls here. Using the notations of
Assumption 5.3, this gives us the following estimator for τ:

τ̌ = [ 1
nT

n
∑
i=1

T
∑
t=1

Γ1 (D̈it, Z̈it, δ̂)]
–1

1
nT

n
∑
i=1

T
∑
t=1

Γ2 (Ÿit, Z̈it, δ̂),

where Γ1(D̈it, Z̈it, δ) = D̈itZ̈
′
itδ and Γ2(Ÿit, Z̈it, δ) = ŸitZ̈

′
itδ.

7.4.1 The cluster-Lasso: intuition

We consider the regression (7.20). The estimation of the cluster-Lasso coefficient is
based on

δ̂ ∈ argmin
δ∈Rpz

1
nT

n
∑
i=1

T
∑
i=1
(D̈it – Z̈′itδ)

2 + λ
nT

pZ
∑
k=1

γ̂k |δk| . (7.21)
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Similar to Section 6.2, the penalty weights γ̂k are chosen such that the “regularizing
event”

λϕ̂j

nT ≥ 2c
||||
1
nT

n
∑
i=1

T
∑
t=1

Z̈itjε̈it
||||

occurs with a high probability. To do this, as in (7.6), we use moderate deviations
theorems from the theory of self-normalization (see Lemma5 inBelloni et al., 2012).
The variablesUij := ∑T

t=1 Z̈itjε̈it/T are independent randomvariables with zeromean
with respect to i, and they satisfy (if the third order moments are finite) when n → ∞
and for α sufficiently small a concentration inequality of the type (7.6). This leads to
a clustered ideal choice of penalty weights:

(γ̂0k)
2 = 1

nT

n
∑
i=1
(

T
∑
t=1

Z̈itjε̈it)
2

= 1
nT

n
∑
i=1

T
∑
t=1

T
∑
t ′=1

Z̈itjZ̈ it′jε̈itε̈ it′ .

As in the previous section, ε̈it is unknown and thus we start with a conservative
penalty, i.e., an estimator of Var (∑T

i=1 Z̈itjD̈it/T), and then we iterate by re-inserting
the estimated ε̈it. As in Section 6.2, we take

λ = 2c√nTΦ–1 (1 – α
2pz

) .

We define the statistic Belloni et al. (2016) call this quantity iZT the “information
index.” Indeed, it quantifies the impact of the dependence on the choice of the tuning
parameter in the sense that it is inversely related to the strength of intra-individual
dependence and can vary between iZT = 1 (perfect dependence within cluster i)
and izT = T (perfect independence within i). Theorem 7.3 shows that, through this
quantity, this dependence has an impact on convergence rates.

iZT = Tmin
1≤k≤p

E [∑T
t=1 Z̈2

itkε̈2it/T]
E [(∑T

t=1 Z̈itkε̈it)
2 /T]

.

We define the empirical Gram matrix Σ̈ = {Σ̈jk}pj,k=1, where

Σ̈jk = 1
nT

n
∑
i=1

T
∑
t=1

Z̈itjZ̈itk.

Theorem 7.3 (Convergence rates of panel cluster-Lasso, Theorem 1 in Belloni et al.,
2016) Let ε > 0. Let {(Dit,Zit)}i=1,..., n,t=1,...,T be an i.i.d. sample in i for which n,T → ∞
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jointly. Assume s = o(niZT ), s log(max(p, nT)) = o(niZT ), and the other regularity
conditions (RE) and sparse eigenvalue condition SE (page 12 in Belloni et al., 2016)
based on Σ̈. Consider an admissible cluster-Lasso estimator δ̂ with a penalty λ =
2c√nTΦ–1(1–α/(2pZ)) and weights {γ̂j}pzj=1, l γ̂

0
j ≤ γ̂j ≤ uγ̂0j where l

p⟶ 1, u
p⟶ 1.

Then, there exist C1 and C2 such that with probability 1 – ε,

‖
‖δ0 – δ̂‖‖1 ≤ C2√

s2 log(max(p, nT))
niZT

.

Note that in the theorem above, the effective sample size niZT is intuitively related to
the structure of temporal dependence: when observations are completely indepen-
dent over time (iZT =T), the effective size is nT while if the observations are perfectly
dependent (iZT = 1), it is n.

Finally, note that under similar growth conditions to Theorem 7.1, namely

s2 log(max(p, nT))2

niDT
= o(1),

then Belloni et al. (2016) also obtain the asymptotic normality of the IV estimator τ̌
in this context:

√niDTV
–1/2(τ̌ – τ0)

d⟶  (0, 1),

where

V := iDT
E [(∑T

t=1 ψ (Ÿit, D̈it, Z̈it, δ0))
2/T]

TE [∑T
t=1 Γ1 (D̈it, Z̈it, δ0)/T]

2 ,

where ψ (Ÿit, D̈it, Z̈it, δ0) := (Ÿit – τ0D̈it) Z̈ ′
itδ0.

7.4.2 Application to the economics of crime

We consider an application to the economics of crime using the data from Balt-
agi (2008) which replicates Cornwell and Trumbull (1994). Note that Belloni et al.
(2016) also develop an interesting application to gun control. The data consist of
a panel of 90 counties in North Carolina over the period 1981–1987. All variables
are in logarithm except for nominal regional and time variables. The main explana-
tory variables are the probability of an arrest (measured by the ratio of arrests to
crimes), the probability of a conviction following an arrest (measured by the ratio of
convictions to arrests), the probability of a prison sentence following a conviction
(measured by the proportion of total convictions that result in prison sentences),
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Table 7.1 Application to the economics of crime of estimation with double selection in cluster

Estimator of the effect of the number of police officers per individual
Within Within “large set” Cluster-Lasso
(1) (2) (3)

Estimator 0.477∗∗∗ 0.306∗∗∗ 0.714∗∗∗
Standard error 0.168 0.054 0.184

the average jail sentence in days as an indicator of the severity of the sanction, the
number of police officers per capita as a measure of the county’s ability to detect
crime, and population density (i.e., the county’s population divided by its area). To
deal with the potential endogeneity of the number of police officers per capita, we
use the same instruments as Cornwell and Trumbull (1994), namely the composi-
tion of crimes (ratio of direct contact crimes to non-contact crimes) and tax revenues
per capita.

The variable selection method presented in this chapter allows us to resolve some
of the trade-offs that researchers face in other circumstances: including a large
number of covariates to account for all potential confounders without compromis-
ing the precision of the estimates. To illustrate this point, we consider Equations
(7.17)–(7.18) with: the same set of controls (16) and instruments (2) as in Cornwell
and Trumbull (1994) and Baltagi (2008) or a “large set” of controls (i.e., includ-
ing interactions and polynomial transformations up to second order, resulting in
544 control variables) and IV (98). The idea is that one may not be sure of the
exact identity of the controls entering the equation. Table 7.1 focuses on the effect of
the number of policemen per inhabitant on crime rates. The cluster-Lasso estima-
tor is different from the within estimator with few controls and IV (first column).
The important point is that the cluster-Lasso estimator does not require a priori
selection, and it selects controls and IVs different from those included in the refer-
ence set. The within estimation for the “large set” seems to be biased as the number
of controls is close to the number of observations in all cases.

7.5 Summary

Key concepts

Non-Gaussian errors, Lasso parameter selection, concentration inequality, sample-splitting,
regularization and instrument selection in panel data, within transformation, cluster-Lasso.
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Additional references

There aremanymethods of selection of tuning parameters in non-parametric and ℓ1 penal-
ized estimation, which are surveyed and described in detail in Chetverikov (2024). Kock et al.
(2024) extend themethods of Section 7.1 to high-dimensional vector autoregressions (VAR).
These extensions aremainly based on Belloni et al. (2012) and Belloni et al. (2016), whichwe
recommend reading. However, these concepts are also used in other contexts such as the
generic machine learning by Chernozhukov et al. (2017) presented in Chapter 8, and now-
casting in Chernozhukov et al. (2021) presented in Chapter 11. Baltagi (2008) provides amore
detailed exposition of the application, including motivations for the choice of instruments.

Codeanddata

The data for the application in Section 7.4.2 are directly accessible in the form of the dataset
“Crime” in the package R plm. Baltagi (2008) provides a complete description of the data.
The code “CrimeIV.R” is available on the courseʼs GitHub and utilizes the rlassoIV function
from the hdm R package.

Questions

1. Howwould youmodify the standard Lasso estimation procedure when the errors are
non-Gaussian and heteroscedastic, if you want to achieve the same convergence
rates (up to a constant)?

2. Explain the principle and advantages of sample splitting. What disadvantages do you
see?

7.6 Proofs andadditional results

Proof of Lemma 7.1 Let L(δ) = ∑n
i=1 (D′

i – Z′i δ)2 /n. Since δ̂ is the solution of the
minimization problem:

L (δ̂) – L (δ0) ≤
λ
n (

‖
‖Γ̂δ0

‖
‖1 – ‖‖Γ̂δ̂

‖
‖1) . (7.22)

Then, using (7.1) and expanding the quadratic function L (·), we obtain

(Di – Z′i δ̂)
2
= (Di – Z′i δ – Z′i (δ̂ – δ))

2

= ε2i – 2εiZ′i (δ̂ – δ) + (Z′ (δ̂ – δ))
2
.
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Using the Hölder inequality and S := 2(Γ̂0)–1∑n
i=1 Ziεi/n,

|
|
|
L (δ̂) – L (δ0) –

1
n

n
∑
i=1
(Z′i (δ̂ – δ0))

2||
|
=
|
|
|
2
n

n
∑
i=1

εiZ′i (δ̂ – δ0)
|
|
|

≤ ‖S‖∞ ‖‖Γ̂
0 (δ̂ – δ0)‖‖1.

Combined with (7.22) and λ/n ≥ c ‖S‖∞, and denoting by

V := 1
n

n
∑
i=1
(Z′i (δ̂ – δ0))

2
,

this leads to

V ≤ λ
n (

‖
‖Γ̂δ0

‖
‖1 – ‖‖Γ̂δ̂

‖
‖1) + ‖S‖∞

‖
‖Γ̂

0 (δ̂ – δ0)‖‖1

≤ λ
n (

‖
‖Γ̂ (δ̂ – δ0)S0

‖
‖1 – ‖‖Γ̂ (δ̂ – δ0)Sc0

‖
‖1)

+ ‖S‖∞ ‖‖Γ̂
0 (δ̂ – δ0)‖‖1

≤ (u + 1
c )

λ
n
‖
‖Γ̂

0 (δ̂ – δ0)S0
‖
‖1 – (l – 1

c )
λ
n
‖
‖Γ̂

0 (δ̂ – δ0)Sc0
‖
‖1

. (7.23)

Then, assumption 4.4 implies ‖Γ̂0(δ̂– δ0)Sc0‖1 ≤ c0‖Γ̂
0(δ̂– δ0)S0‖1. By definition of κc0

we obtain
κc0 ‖‖Γ̂

0(δ̂ – δ0)S0‖‖2 ≤ V1/2

and using the Cauchy–Schwarz inequality ‖Γ̂0(δ̂ – δ0)S0‖2 ≥ ‖Γ̂0(δ̂ – δ0)S0‖1/√s,

‖
‖Γ̂

0 (δ̂ – δ0)S0
‖
‖1 ≤ √s

κc0
V1/2 (7.24)

which, in (7.23), leads to

V1/2 ≤ (u + 1
c )

λ√s
nκc0

. (7.25)

The result of the lemma is obtained by using (7.25),

‖
‖Γ̂

0 (δ̂ – δ0)‖‖1 ≤ (1 + c0) ‖‖Γ̂
0 (δ̂ – δ0)S0

‖
‖1

and (7.24). □
Proof elements for Theorem 7.1 The proof is based on three steps. First, for this
choice of λ, using Lemma 5 in Belloni et al. (2012), we have as α → 0 and n → ∞

P
⎛
⎜
⎜
⎝

2c√n

||||||

1
√n

∑n
i=1 Zi,jεi

γ0j

||||||
> λ

⎞
⎟
⎟
= o(1).
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Thus, for sufficiently large n and sufficiently small α, we can consider the regular-
ization event,

 :=
⎧⎪
⎨⎪
⎩

||||||

1
√n

∑n
i=1 Zi,jεi

γ0j

||||||
≤ λ

2c√n

⎫⎪
⎬⎪
⎭

,

which occurs with a probability greater than 1 – α. Second, using

κc0 ≥ 1
‖γ̂0‖∞

κ(‖γ̂0‖∞/‖1/γ̂0‖∞)c0 (
1
n

n
∑
i=1

ZiZ′i ) > 0.

Third, applying Lemma 7.1 to with λ = 2c√nΦ–1 (1 – α/(2p)), and using that there
exists C3 such that Φ–1(1 – α/(2p)) ≤ C3√log(p/α), we obtain

‖
‖Γ̂

0 (δ̂ – δ0)‖‖1 ≤ (1 + c0)
κc0

(u + 1
c )

λs
nκc0

≤ (1 + c0)
κc0

(u + 1
c )Φ

–1 (1 – α
2p)

2cs
√nκc0

≤ (1 + c0)
κc0

(u + 1
c )

2cC3

κc0
s√log(p/α)

√n
,

which leads to the result. □

Proof of Theorem 7.2 The proof mainly consists of modifying the proof of
Theorem 5.1 to use the independence between (εi)

nj
i=1 and η̂jc for j ∈ {a, b}.

Step 1: analysis of τ̌j. Let’s take j ∈ {a, b}.
As in Theorem 5.1, the growth condition (7.8) suffices to obtain

n–1
j

nj
∑
i=1

Γ1 (W j
i, η̂

jc) → EΓ1(Wi, η0).

Then, we need to show that under the weaker condition (7.8), we still have

1
√nj

nj
∑
i=1

ψ (W j
i, τ0, η̂

jc) →  (0, Var[ψ(Wi, τ0, η0)]).



Going further 131

We use the fact that E[ε j|X j
i, ζ

j
i] = 0 and that {ε j

i , 1 ≤ i ≤ nj} are independent from
the jc sample, to obtain

E [ψ (W j
i, τ0, η̂

jc) – ψ (W j
i, τ0, η0)]

= E [E [ψ (W j
i, τ0, η̂

jc) – ψ(W j
i, τ0, η0)|X j

i, ζ
j
i, j

c]]

= E [E [εj|X j
i, ζ

j
i] ((Z

j
i)
′
(δ̂

jc
– δ0) + (X j

i)
′
(γ̂ jc – γ0) – (X j

i)
′
(ν̂ jc – ν0))]

= 0.

Then, by letting j := (X j
i, ζ

j
i, jc), and using Chebyshev’s inequality, the fact that

η̂ jc – η jc are independent of {ε j
i, 1 ≤ i ≤ nj} due to the independence of the two

sub-samples j and jc, and that {ε j
i, 1 ≤ i ≤ nj} have a conditional variance on (X j

i, ζ
j
i)

bounded above by K, we obtain

P (
|
|
|
√n
nj

nj
∑
i=1
(ψ (W j

i, τ0, η̂
jc) – ψ (W j

i, τ0, η0))
|
|
|
> ε)

≤ 1
ε2E [

|
|
|
√n
nj

nj
∑
i=1
(ψ (W j

i, τ0, η̂
jc) – ψ (W j

i, τ0, η0))
|
|
|

2

]

≤ E [
nj
∑
i=1
((Zji)

′ (δ̂
jc
– δ0) + (X j

i)
′ (γ̂ jc – γ0) – (X j

i)
′ (ν̂ jc – ν0))

2 nj
∑
i=1

n(ε j
i)2

ε2n2
j
]

≤ E [E [
nj
∑
i=1
((Z j

i)
′ (δ̂

jc
– δ0) + (X j

i)
′ (γ̂ jc – γ0 – ν̂ jc + ν0))

2 nj
∑
i=1

n(ε j
i)2

ε2n2
j

|||j]]

≤ E [
nj
∑
i=1
((Zji)′ (δ̂

jc
– δ0) + (X j

i )
′ (γ̂ jc – γ0 – ν̂ jc + ν0))

2
]E [

nj
∑
i=1

n(ε j
i)2

ε2n2
j

|||j]

≤ K
ε2E [

n
n2
j

nj
∑
i=1
((Z j

i)
′ (δ̂

jc
– δ0) + (X j

i)
′ (γ̂ jc – γ0) – (X j

i)
′ (ν̂ jc – ν0))

2
]

≤ K
ε2

n
nj
C2

κC
s log(max(p, nj))

nj
.

By using Theorem 7.1, we obtain

√nj (τ̌j – τ0) = [ 1
nj

nj
∑
i=1

Γ1 (W j
i, η0)]

–1
1
√nj

nj
∑
i=1

ψ (W j
i, τ0, η0) + oP(1). (7.26)

Step 2: On the aggregate estimation τ̌. By combining the two results, we obtain the
asymptotic representation of√n (τ̌ – τ0)
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√n (τ̌ – τ0)

= [1n
na
∑
i=1

Γ1(W a
i , η0) +

1
n

nb
∑
i=1

Γ1(W b
i , η0)]

–1

× ((
na
∑
i=1

Γ1(W a
i , η0)

√n
) (τ̌a – τ0) + (

nb
∑
i=1

Γ1(W b
i , η0)

√n
) (τ̌b – τ0)) + oP(1)

= [1n
n
∑
i=1

Γ1(Wi, η0)]
–1

(
na
∑
i=1

ψ(W a
i , τ0, η0)
√n

+
nb
∑
i=1

ψ(W b
i , τ0, η0)
√n

) + oP(1),

which concludes the proof. □



PART II I

TREATMENT EFFECT HETEROGENEITY





Chapter 8
Inferenceonheterogeneous effects

In Chapter 3, we introduced the tools for estimating a specific statistic of the
individual treatment effect Y(1) – Y(0): the average treatment effect (ATE),
τ0 := E [Y(1) – Y(0)]. Chapter 5 detailed how these methods could be extended
to the case of a large number of control variables. However, this average may hide
important differences in treatment effect related to the observed individual char-
acteristics X. For a treatment that produces a positive effect on average, we would
be particularly interested in the possibility of detecting whether it does not harm
certain subpopulations, which could then be characterized. This heterogeneity will
be used in Chapter 9, where we will consider the question of how to best adjust the
treatment allocation based on the individual characteristics X.

One of the tools for identifying this heterogeneity is the function

τ : x ∈  ↦ E [Y(1) – Y(0)|X = x],

that is, the average treatment effect conditional on the characteristics (conditional
average treatment effect, or CATE). Because it is a function, this object is more com-
plicated than the ATE, which is a scalar. This is especially the case when the support
of X is continuous, where the CATE is inherently high-dimensional. This chapter
introduces the recently developed tools for characterizing the heterogeneity of treat-
ment effects and statistically testing whether there are subgroups of the population
that are differentially affected by them.

Section 8.1 of this chapter begins by describingmore formally the problemand the
limitations of certain simple approaches. Sections 8.2 and 8.3 respectively describe
the two main directions taken in the literature. The first proposes a direct estima-
tion of the CATE under fairly general conditions on the machine learning methods
used. The second, in particular, adapts certain methods presented in Chapter 2
to perform inference. In Section 8.3.6, we detail how the latter approach can be
used to perform inference in the presence of endogeneity with causal random
forests. The complexity of the CATE has also led to interest in simpler statistics
that allow the heterogeneity of treatment effects to be described and tested. Section
8.4 therefore details inference on the properties of heterogeneous effects with selec-
tion on observables. Finally, Section 8.6 summarizes all the proofs and additional
results of this chapter, and each section includes some applications of the tools
developed.

Machine Learning for Econometrics. Christophe Gaillac and Jérémy L’Hour,
and Jérémy L’Hour (2025). DOI: 10.1093/9780198918868.003.0008
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8.1 Heterogeneous treatment effects

For an agent indexed by i, let Yi(0) denote the potential outcome if the agent is not
treated, and Yi(1) denote the potential outcome if the agent is treated. We observe
the treatment exposure Di and the realized outcome Yi = DiYi(1) + (1 – Di)Yi(0). In
this section, we consider an i.i.d. sample (Yi,Di,Xi) for i = 1, . . . , n, where Xi ∈ 
contains observable characteristics of the agent i. We also maintain the assumption
of treatment independence conditional on observables or unconfoundedness (see
Chapter 3, Section 3.3):

Assumption 8.1 (Unconfoundedness assumption).

D ⊥⊥ (Y(0), Y(1)) | X. (8.1)

A first idea to describe the heterogeneity of treatment effects would be to cluster
the population into subgroups based on the observed characteristics X, in order to
perform the following test:

H0 : ∀x ∈  , τ(x) = τ0, vs H1 : ∃x ∈  , τ(x) ≠ τ0,

where τ0 = E [Y(1) – Y(0)]. The problemwith this approach is that the researcher 1)
often does not know all the subgroups of interest (i.e., sets of interactions between
covariates) and 2) would like to perform multiple tests of this type to identify the
sub-population of interest. However, if we assume that each test is performed at the
α level, then the probability that some of the true null hypotheses are rejected by
chance alone may be large. Indeed, if all tests are mutually independent, then the
probability that at least one true null hypothesis will be rejected is 1–(1–α)K, where
K is the number of tests performed. This is greater than α for K > 1, and actually
tends to 1 as K → ∞. In other words, the test level is no longer controlled. This is the
problem known asmultiple testing.

There are corrections for this problem, such as the Bonferroni correction, which
does not take into account the correlation between events and is therefore conser-
vative (see also Romano and Wolf, 2005; List et al., 2016; Hsu, 2017, for other more
advanced strategies). However, it is still necessary to specify the assumptions of the
test. In general, the researcher has an intuition about the characteristics that are driv-
ing the heterogeneity of the treatment effect and can therefore test the hypothesis of
equality of effects between these subgroups. However, it may be realized that this
a priori is not the most relevant. Furthermore, we would also like to implement an
automatic way to partition the population and test for the heterogeneity of effects
in these groups. Ideally, we would like to form these partitions in a way that maxi-
mizes the heterogeneity between groups. This would allow for significant differences
despite samples that are often of limited sizes due to the cost of experimentation.

Denoting by μj(·) = E [Y|X = ·,D = j] for j = 0, 1 and using the assumption of
selection on observables (8.1), it can then be observed that the CATE can be written
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as follows:

τ(x) = E [Y(1)|X = x] – E [Y(0)|X = x]
= μ1(x) – μ0(x).

These two functions μj, for j = 0, 1, are regression functions of the observed
outcome variable Y on the variables X, which can be estimated separately on the
treatment group {i : Di = 1} and the control group {i : Di = 0}. However, in a finite
sample, a major pitfall of this approach is that μ̂1 and μ̂0 will then have different reg-
ularization biases, which can lead, when we take the difference to form an estimator
of the CATE, to estimating heterogeneity where there is none. The problem is partly
exacerbated by the fact that the treatment and control groups may be of very differ-
ent sizes, leading to very different precisions of the estimators of μ1 and μ0, which
affects what can be inferred about their differences.

The literature has mainly followed two types of approaches. The first one histor-
ically (see e.g., Imai and Ratkovic, 2014; Athey et al., 2019; Farrell et al., 2021) aims
to adapt different machine learning methods to the context of CATE estimation.
These methods, studied in Section 8.3, allow for inference under sometimes quite
restrictive conditions. In the context of the above remark and model (8.2), Imai and
Ratkovic (2014) proposed to use the joint estimator:

(γ̂, δ̂) = argmin
γ,δ

n
∑
i=1

(Yi – X ′
i γ + (Di – 0.5)X ′

i δ)2 + λ1‖γ‖1 + λ2‖δ‖2,

with τ̂(x) = x′δ̂, which produces a parsimonious estimator of the treatment effect.
Exercise 15.3 provides more details on this estimator. However, adapting each
method requires the development of an associated theory, which limits the choice
of the learning method to best estimate the functions μj(·).

A second approach (see e.g., Robinson, 1988; Nie and Wager, 2020; Kennedy,
2023) considers the functionsm(·) := E [Y |X = ·] and p(·) := E [D|X = ·] as nuisance
parameters, i.e., parameters that are necessary for the estimation of the parameter of
interest but not the focus of the study, involved in the estimation of the CATE. These
two parameters can be estimated by a wide range of machine learningmethods. The
developed estimator possesses a quasi-oracle property, meaning that it is almost as
performant as the CATE estimator obtained when the true functions m and p are
known. We start by developing this approach in Section 8.2.

Remark 8.1 High-dimensional linearmodel

Here, we illustrate the problem when estimating the heterogeneity of treatment effects by
performing separate regressions on the treatment and control groups without using a com-
mon objective. Consider an example using a high-dimensional linearmodel as developed in

Continued
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Remark 8.1 Continued

the previous section:

Y( j) = X ′βj + εj, E[εj|X] = 0, for j ∈ {0, 1}, (8.2)

where β0, β1 ∈ Rp and p ≫ n. Under the assumption of sparsity of the two vectors β0, β1,
‖β0‖0, ‖β1‖0 ≤ s < p, they can be separately estimated via Lasso on the treatment and
control groups:

β̂j ∈ argmin
βj∈Rp

1
|i : Di = j| ∑

i: Di=j
(Yi – X ′

i βj)2 + λj,n‖βj‖1.

We can derive an intuitive estimator of the CATE under this model as τ̂(x) = x′(β̂1 – β̂0).
However, in general the different regularizations of β0, β1 can then lead to inaccurate esti-

mation of τ. As an example, consider the model (8.2) with 150 explanatory variables X with
βj,k = 0 for anykdifferent from1,β1,1 = β0,1 = 1, 400observations, andD followingaBernoulli
distribution with parameter 0.8. In Figure 8.1, we can observe heterogeneity when estimat-
ing β0, β1 separately, even though there is none in this DGP. The reader can refer to Künzel
et al. (2019) for other examples.

5
Not Treated

Estimate of E[Y]D=0, X=x]
Estimate of E[Y]D=1, X=x]
Translated estimate of E[Y]D=1, X=x]

Treated

0

–5.0 –2.5 0.0
X

Y

2.5

Figure 8.1 Example of estimation of the heterogeneity of treatment effects leading to artifacts:
we detect heterogeneity where there is none.
Note: The points represent the 400 observations, treated (dots) or not (triangles). The top dotted line is the
estimate of the regression function E(Y|D = 1, X = ·) using the treated individuals, and the bottom line is
simply its translation. Similarly, the solid line is the regression function E(Y |D = 0, X = ·) using the untreated
individuals.
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8.2 Direct estimation

The two nuisance parameters, which can be directly estimated from the data, are
denoted by:

p(x) := E [D|X = x] , (PROPENSITY SCORE)

m(x) := E [Y|X = x] = μ0(x) + p(x)τ(x). (REGRESSION FUNCTION)

Nie and Wager (2020) base their estimator of the treatment effects τ, called the
R-learner, on the following representation proposed by Robinson (1988) in the
context of the semi-parametric model discussed in the remark below:

Yi –m(Xi) = (Di – p(Xi))τ(Xi) + εi, E [εi|Xi,Di] = 0. (8.3)

The parameter τ therefore satisfies

τ(·) = argminτ {E [(Yi –m(Xi) – (Di – p(Xi))τ(Xi))2]} . (8.4)

To reflect an a priori potential for the form of the treatment effect (i.e., linear, dis-
continuous, regular, etc.) and limit the complexity of the problem, one can choose
to restrict τ to belong to a class of functions Θ, thereby limiting its complexity. With
preliminary knowledge of the estimators m̂ and p̂ of the functionsm and p, we esti-
mate τ by minimizing the empirical loss penalized by Λn, which takes into account
the complexity of the function τ:

τ̂(·) = argmax
τ∈Θ

{1n
n
∑
i=1
((Yi – m̂(Xi) – (Di – p̂(Xi))τ(Xi))2 + Λn(τ(Xi))} . (8.5)

Nie and Wager (2020) propose a two-step estimator:

1. (Estimation of nuisance parameters) Adjustment of m̂ and p̂ by any method
aiming to achieve good prediction performance (random forests, deep neural
networks, Lasso, etc.).

2. (Estimation of treatment effects) Estimate the treatment effects via a plug-
in version of (8.5), using cross-fitted estimators (for example, leave-one-out,
where the partition described in Section 5.3 consists of a single observation
per group):

Ỹ(i)(Xi) := Yi – m̂(i)(Xi) and D̃(i)(Xi) := Di – p̂(i)(Xi).

Allowing for a two-step estimation, as opposed to the formulation of the causal forest
in Section 8.3, enables the selection ofmethods that aremore suitable for the profiles
ofm and p in the initial stages. By generalizing the insights andmethods of the semi-
parametric model in (8.7), the details of which are presented in the remark below,
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Nie and Wager (2020) show that it is thereby possible to replicate the performance
of the oracle estimator based on (8.5), which assumes knowledge of m and p, given
that:

max (E ((m̂(X) –m(X))2) ,E ((p̂(X) – p(X))2)) = oP(n–1/2), (8.6)

and where there is a uniformly consistent estimator of the propensity score
supx∈ |p̂(x) – p(x)| →P 0. The method uses cross-fitting, introduced in Section 5.3,
and the expectations in (8.6) are implicitly conditioned on the sample that was used
to select the parameters of the estimators m̂ and p̂, which are considered determin-
istic in this equation. The condition (8.6) imposes a convergence rate in quadratic
norm on the estimators of the regression function and propensity score. In practice,
this condition is satisfied by a large number of classical non-parametric methods
presented, for example, in Chapter 2, provided that the true functions p and m are
sufficiently smooth.

Once estimated, however, it remains to test whether the potentially detected het-
erogeneity of treatment is statistically significant. The method proposed by Nie and
Wager (2020) does not currently allow for inference without additional assumptions
about the form of τ. An indirect approach consists of using the estimated CATE to
guide the statistical analysis in subgroups. However, this is potentially subject to the
risk of multiple testing (see Section 8.3.5 and the papers by Davis and Heller, 2020,
and Davis and Heller, 2017). This involves separately estimating the average treat-
ment effect for these subgroups, as in the second part of this book, and then testing
whether the differences are statistically significant. Another approach is to use the
estimated CATE to calculate the best linear prediction of the CATE based on τ̂(x),
introduced in Chernozhukov et al. (2017) and discussed in detail in Section 8.4.1.
The latter is a simpler object on which inference is possible. Finally, Section 8.3
proposes a less flexible method regarding the form of τ, but which allows for direct
inference.

Remark 8.2 Semi-parametricmodel

To give the intuition for Equation (8.3), we consider the following semi-parametricmodel for
τ(x) = φ(x)β and

Y(d) = f (X) + dτ (X) + ε(d), d ∈ {0, 1}, (8.7)

whereφ : →Rp is a known function. In the spirit of Robinson (1988) andunder Assumption
8.1, we obtain:

Y –m(X) = (D – p(X))φ(X)β + ε.

We can thus construct an asymptotically normal “oracle” estimator of β, that is, assumingm
and p are known and regressing Y –m(X) on (D – p(X))φ(X).
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To put this estimator into practice, a general technique is to use cross-fitting, introduced
in Section 5.3:

1. Determine a partition (Ik)k=1,...,K of {1, . . . , n} and estimatem and p, respectively, by
regressing, using the method of our choice, Y on X andD on X for i ∈ {1, . . . , n}⧵Ik;

2. Define the transformed variablesỸi := Yi – m̂k(i)(Xi) and D̃i := (D – p̂k(i)(X))φ(X)
where m̂k(i) and p̂k(i) are the estimators obtained using the sample that does not
contain i;

3. Finally, estimate β by ordinary least squares ofỸi on D̃i.

The important point is that when

max(E ((m̂(X) –m(X))2) ,E ((p̂(X) – p(X))2)) = oP(n–1/2),

then the cross-fitting estimator converges in probability at a rate of√n to the oracle estima-
tor, and asymptotic normality is preserved.

8.3 Inferencewith causal random forests

One cannot directly use statistical learning methods such as random forests to esti-
mate the treatment effect, aswenever observe both Y0 and Y1 for the same individual.
Therefore, it is not possible to calculate an error on a test sample for the treatment
effect. As a result, part of the literature has adapted these tools to the causal infer-
ence framework. The main properties of random forests are recalled in Section 2.7,
and we show here how to adapt these methods to estimate the CATE. Note that we
restrict ourselves to random forests, but other methods have also been adapted to
the causal inference framework: Lasso (Imai and Ratkovic, 2014), neural networks
(Farrell et al., 2021), etc.

8.3.1 Double sample trees

One way to perform causal inference is to rely on the “honesty” property of the tree
(Athey and Imbens, 2016; Athey andWager, 2021), which we now detail. Compared
to the standard tree explained in Chapter 2, an “honest” tree or “double sample tree”
does not use the same sample to determine the splits that partition the variable space and to evaluate the value of the estimator in the leaves. When observations are
independent and identically distributed, this makes the construction of the parti-
tion independent of the given value on each leaf of the tree. In particular, this limits
overfitting by avoiding overly fine partitions in a specific area of the space related to
certain values of Y in the subsample used.



142 Machine Learning for Econometrics

We also use “random split trees,” where the direction of the split is randomly
chosen. We will explain later why this choice is useful for proving the consistency
of the estimator. We now study the properties of double sample trees, constructed
according to the following algorithm:

1. For each possible subsample of size s in {1, . . . , n}, divide it into two disjoint
sets  and  of sizes || = ⌊s/2⌋ and | | = ⌈s/2⌉.

2. Build a decision tree through recursive partitioning, with splits chosen using
the sample  (i.e., without using the observations of Y contained in the
sample ).

3. Estimate the responses only in the leaves using the sample .

8.3.2 Two-sample random forests

In a second step, we aggregate the trees formed on all possible subsamples of size
s from the training data. This leads to the creation of two-sample random forests
(double sample random forests or bagging), by aggregating decision trees formed
on different subsamples of size s, where these subsamples are formed by randomly
selecting the variables X, with this randomness represented by ξ distributed as Ξ:

μ̂(x;Z1, . . . ,Zn) = ( n
s )

–1

∑
1≤i1<···<is≤n

Eξ~Ξ [Tξ(x;Zi1 , . . . ,Zis)] , (8.8)

where:

– Tξ(x;Zi1 , . . . ,Zis) is the decision tree based on (Zi1 , . . . ,Zis), Zi := (Di,Xi, Yi);

– ( n
s ) is the number of combinations of s elements among n;

– ξ summarizes the random aspect of the variable selection during the tree
growth.

Given that the number of terms in the sum in (8.8) is very large ( n
s ), we use an

approximation of the estimator from Equation (8.8) using a Monte Carlo method.
Specifically, we draw B samples b of size s without replacement, where the b-th
sample is (Z∗

b,1, . . . ,Z∗
b,s), and we consider the following approximation of (8.8):

μ̂(x;Z1, . . . ,Zn) ≈
1
B

B
∑
b=1

Tξ∗b (x;Z
∗
b,1, . . . ,Z∗

b,s), (8.9)
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where the learning is based on:

Tξ∗b (x;Z
∗
b,1, . . . ,Z∗

b,s) = ∑
i∈b

α∗
b,i(x)Y ∗

b,i, (8.10)

α∗
b,i(x) =

1 {X ∗
b,i ∈ L∗

b (x)}
|{i : X ∗

b,i ∈ L∗
b (x)}|

.

This aggregation strategy, called bagging, reduces the variance of the estimator of
μ (see, e.g., Bühlmann and Yu, 2002). It should be noted that the honesty property
requires the partitions L∗

b in (8.10) to be independent of the values in the leaves Y ∗
i,b.

8.3.3 Bias and honesty of the random forest regression

We consider hereafter i.i.d. observations (Yi,Xi)ni=1 and show the consistency of an
estimator μ̂(·) of μ(·) = E[Yi|Xi = ·]. This helps to form an intuition about the nec-
essary adaptations of usual statistical learning tools to obtain their consistency or
asymptotic normality at the expense of predictive performance.

Definition8.1 (Leaf diameter). The diameter of the leaf L(x) is the length of the longest
segment contained in L(x), which we denote by Diam(L(x)).
The diameter of the leaf L(x) parallel to the j-th axis is the length of the longest
segment contained in L(x) parallel to the j-th axis, which we denote by Diamj(L(x)).

One way to ensure the consistency of the estimator is to impose that the leaves
become small in all directions of the feature space  when n (and therefore s)
becomes large: Diam(L(x)) → 0 as s → ∞ (see Lemma 8.1). To do this, we impose
randomness in the variable selection at each step (random-split tree). We need the
following assumptions.

Assumption 8.2

– Random-split tree: the probability that the next split occurs along the j-th
feature is bounded from below by δ/p, where 0 < δ ≤ 1.

– α-regular: from the sample  , each split leaves at least a fraction α of
observations of the training set on each side of the split.

– Minimum leaf size k: there are between k and 2k – 1 observations in each
terminal leaf of the tree.

– Honest tree: the samples used to construct the nodes and to evaluate the
estimator on the leaves are different.
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The minimum leaf size k is a regularization parameter that must be set by
the researcher. In practice, cross-validation can be used to choose k. The follow-
ing lemma is essential, but it relies on a very strong assumption regarding the
distribution of the covariates.

Lemma8.1 (Control of leaf diameter in uniform random forests, Lemma2 inWager and
Athey, 2017). Let T be an α-regular tree satisfying Assumption 8.2 and X1, . . . , Xs ~ ([0, 1]p) independently. Let 0 < η < 1, then for sufficiently large s,

P (Diamj(L(x)) ≥ ( s
2k – 1)

–α1δ/p
) ≤ ( s

2k – 1)
–α2δ/p

,

where α1 = 0.99(1 – η) log(1 – α)/ log(α) and α2 = η2/(–2 log(α)).

Finally, a key assumption to obtain a consistent estimator is that x ↦ μ(x) is Lips-
chitz. This limits the use of these random forests to regression functions μj that are
sufficiently regular. This is a classic assumption in non-parametric estimation, where
many methods such as kernel estimation, smoothing splines, neural networks, etc.
are used. All of these methods require some form of regularity in the object being
estimated.

Lemma 8.2 (Control of the bias in double sample random forests, Theorem 3 in Wager
and Athey, 2017). Let T satisfy Assumption 8.2, x ↦ μ(x) be Lipschitz, α ≤ 0.2, then
the bias of the random forest for x ∈  is bounded by

||E [μ̂(x)] – μ(x)|| =  (s–α3δ/p) ,

where α3 = log(1 – α)/(2 log(α)).

Lemma 8.2 states that the bias of our double-sample random forest estimator μ̂ (x)
of μ(x) goes to zero at a rate that decreases with the dimension of the covariates
(p), but increases with the regularity of the tree (α3) and the parameter indexing the
random split (δ).

8.3.4 Double sample causal trees

The asymptotic normality of random forest regression is proved in Theorem 8 of
Wager and Athey (2017). Here, for simplicity, we state directly the asymptotic nor-
mality of causal forests (Theorem 11 in Wager and Athey, 2017). Causal forests are
random forests for treatment effect estimation, and are particularly useful for causal
inference where the difficulty is that the outcome of the regression is not directly
observed.
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The algorithm for double sample causal trees is similar to the algorithm for dou-
ble sample trees, but the splits are chosen (splitting criterion) to maximize the
variance of

τ̂(x) = μ̂1(x) – μ̂0(x) = 1
|{i, Di = 1, Xi ∈ L(x)}| ∑

i: Di=1, Xi∈L(x)
Yi

– 1
|{i : Di = 0, Xi ∈ L(x)}| ∑

i, Di=0, Xi∈L(x)
Yi, (8.11)

while Assumption 8.2 is replaced by:

Assumption 8.3

– α-regularity: each leaf L(·) leaves at least a fraction α of the available training
examples on each side of the split;

– Minimum leaf size k: there are between k and 2k – 1 observations of each
treatment group in each terminal leaf of the tree (with Di = 1 or with Di = 0);

– Honest trees: the sample  used to place the splits is different from the sample used to evaluate the estimator through (8.11).

Without the honesty property, the treatment effect estimator would be based on
leaves that lead to a high treatment effect, but this likely means that the treatment
effect in these leaves is biased.

Remark 8.3 Causal forests: summaryof the algorithm

We summarize the algorithm for causal forests. Starting from an i.i.d. sample (Yi, Xi,Di),
i = 1,…, n, where Yi is the outcome variable, Xi are the features, andDi is the treatment
indicator, and after fixing a minimum leaf size k for each treatment groupD = 0, 1:

1. Randomly draw a sample of size s from {1,…, n}without replacement, and split it
into two subsamples  and of respective sizes ⌊s/2⌋ and ⌈s/2⌉;

2. Build a decision tree through recursive partitioning, with splits chosen using the
sample (i.e., without using the Y observations contained in the sample ) and
minimizing on sample an error criterionMSE(τ̂) adapted to the treatment effect,
where τ̂ is defined in (8.11) andMSE(τ̂) is discussed in the remark below.

3. Estimate the responses τ̂ defined in (8.11) in the leaves using only the sample .
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The following set of assumptions about the distribution of the covariates, the reg-
ularity of μj, and the existence of the conditional variance, allows us to obtain the
asymptotic normality of causal random forests.

Assumption 8.4 (Regularity conditions for asymptotic normality). The potential
outcomes samples (Xi, Yi(1)) and (Xi, Yi(0)) satisfy, for j ∈ {0, 1},

– Xi ~  ([0, 1]p) independently;
– μj : x↦ E[Y( j)|X = x] and μj,2 : x↦ E[Y( j)2|X = x] are Lipschitz;
– Var(Y( j)|X = x) > 0 and E[|Y( j) – E[Y( j)|X = x]|2+δ1 ] ≤ M for constants
δ1,M > 0 uniformly over x ∈ [0, 1]p.

The infinitesimal jackknife estimator (Efron, 2014; Wager et al., 2014) is
denoted by

V̂IJ(x) = n – 1
n ( n

n – s)
2 n
∑
i=1
( 1
B – 1

B
∑
b=1

(̂τ∗b (x) – τ̂∗b (x)) (N∗
i,b – N∗

b )) ,

where N∗
i,b indicates whether the i-th observation has been used or not for the b-th

bootstrap tree and N∗
b , τ̂∗b are averages over the B bootstrap trees.

Theorem 8.1 (Asymptotic normality, double sample causal random forests, Theorem 1
in Wager and Athey, 2017) Assume that we have i.i.d. samples Zi = (Xi, Yi,Di)ni=1 ∈
[0, 1]p ×R × {0, 1}, Assumption 8.1, and that there exists ε > 0 such that ε ≤ P(D =
1|X) ≤ 1 – ε. Let’s assume that Assumption 8.4 is satisfied and consider a double-
sample causal random forest satisfying Assumption 8.3 with α ≤ 0.2. Assume that

s = ⌊nβ⌋, for a certain βmin := 1 – (1 + p
δ

log(α–1)
log ((1 – α)–1))

–1
< β < 1. (8.12)

Then, there exist a function C(·) and a constant γ > 0 both independent of n, such
that the estimator τ̂(x) of the CATE at a point x is asymptotically normal:

τ̂(x) – τ(x)
σn(x)

→d  (0, 1) ,

where σn(x) := s
n

C(x)
log(n/s)γ . The asymptotic variance σn(x) can be consistently

estimated using the infinitesimal jackknife:

V̂I J(x)/σ2
n(x)

p⟶ 1.
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Several comments are in order. First, because of the restrictions on β, we can spec-
ify the convergence rate n–1/(1+pα3/δ), which does not allow a case of “high dimension”
in the sense of the second part (p ≫ log(n)). Theorem 8.1 allows inference, i.e.
testing the significance of the treatment effect for a population with covariates x,
without imposing a priori on the groups formed from the characteristics X learned
from the data. Third, the Theorem 8.1 relies on a very strong assumption about the
distribution of the covariates.

Remark 8.4 On the segmentation criterion

If the result of the regression τi was observed and without dividing the training sample  tr

(as for theCART regressionalgorithm, see reminders inSection2.7.2), then the cutoffs should
minimize the empirical counterpart of the quadratic error loss

E [(τi – τ̂(Xi))2] = E [τ2i ] – 2E [̂τ(Xi)τi] + E [̂τ(Xi)2]

on the test sample te. This amounts to minimizing

MSE τ̂ ( te, tr,T) := 1
| te| ∑

i∈te
((τi – τ̂(Xi; tr,T ))2 – τ2

i )

= – 2
| te| ∑

i∈te
τiτ̂(Xi; tr,T ) + 1

| te| τ̂(Xi; tr,T )2. (8.13)

However, since τi is not directly observed, Athey and Imbens (2016) use a criterion thatmim-
ics what is done in the CART algorithm. Here, using the fact that the estimators μ̂(Xi) are
constant on each leaf Lm by definition, we have, for x ∈ Lm,

∑
i ∈ , i s.t. Xi∈Lm

μ̂(Xi)2 = ∑
i ∈ , i s.t. Xi∈Lm

μ̂(Xi)
|Lm| ∑

k ∈ , k s.t. Xk∈Lm
Yk

= ∑
k ∈ , k s.t. Xk∈Lm

Yk
|Lm| ∑

i ∈ , i s.t. Xi∈Lm
μ̂(Xi)

= ∑
k ∈ , k s.t. Xk∈Lm

μ̂(Xk)Yk.

Thus, (8.13) shows that, in the context of regression, we want to minimize the unbiased
estimator of MSEμ̂ ( te, tr,T)which is

MSEμ̂ ( tr, tr,T) = – 1
| tr| ∑

i∈tr
τ̂(Xi; tr,T )2.

Continued
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Remark 8.4 Continued

In the context of the treatment effect, this leads Athey and Imbens (2016) to consider, by
analogy, the maximization of the achievable criterion

–MSEτ̂ ( tr,eval,T) = 1
|eval| ∑

i∈eval
τ̂(Xi; tr,T)2,

where the training sample is divided into an evaluation sample eval and a true training
sample tr.

Another interesting criterion analyzed by Athey and Imbens (2016) is based on

T =
||̂τ1 – τ̂2||

√Var(̂τ1) + Var(̂τ2)
,

where τ̂1 and τ̂2 are the estimated treatment effects in each child node, with the estimated
variances Var(̂τ1) and Var(̂τ2), respectively. This criterion is a t-statistic type criterion, which
tests the equality of treatment effects between the two potential child nodes, and aims to
select the most different ones.

Remark 8.5 Local centering

The ideas derived from the literature considered in the first two sections (i.e., Chernozhukov
et al., 2017) led Athey and Wager (2021) to consider a local centering pre-processing before
estimating causal random forests. More specifically, they show, using simulations, that
estimating the aforementioned double sample causal forests with orthogonalized results

Ỹi = Yi – E[Yi|Xi = x],

D̃i = Di – E[Di|Xi = x],

improves the algorithmʼs performance. In practice, they propose using estimators based on
random forests for the regression function in the above equations. This translates into the
use of recentered variables Ỹi = Yi – Ŷ(–i)(Xi) and D̃i =Di – D̂(–i)(Xi), where Ŷ (–i)(Xi) and
D̂(–i)(Xi) are leave-one-out estimators (random forests evaluated without the i-th observa-
tion, which is computationally inexpensive).

8.3.5 Applications

Davis and Heller (2017) and Davis and Heller (2020) estimate the impact of two
youth employment programs in Chicago. These two randomized controlled trials
focus on the same summer employment program in 2012 and 2013. They have
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relatively large sample sizes (1,634 and 5,216 observations, respectively) and con-
trol for a wide range of covariates. The program provides disadvantaged youth
between the ages of 14 and 22 with a 25-hours-per-week job and an adult men-
tor. Participants are paid Chicago’s minimum wage. The researchers focus on
two outcomes: arrests for violent crime in the two years following randomiza-
tion and an indicator of employment status in the six quarters following the
program.

They ask: if we divide the sample into a group that is predicted to respond pos-
itively to the program and a group that is not, will we be able to identify youth
with larger treatment effects? To do this, they train the causal forest on half of
the sample and then use the treatment effect predictions on the other half. Then
they regress the outcomes on the two indicators 1{̂τ(Xi) > 0}, Di1{̂τ(Xi) > 0}, and
Di(1 – 1{̂τ(Xi) > 0}). They test the null hypothesis that the treatment effect is the
same in both groups. Their results show that the test is rejected in the training sam-
ple for both outcome variables of interest, while it detects significant heterogeneity
only for the employment outcome in the test sample. This could be an indica-
tion of overfitting. It is worth noting that changing the partitioning rule does not
seem to change their results significantly. They conclude from this analysis that
sampling error may prevent detection of the treatment effect with these sample
sizes.

Hussam et al. (2022) use a causal random forest to assess the impact of provid-
ing a $100 subsidy to randomly selected entrepreneurs in India, particularly on their
returns. In addition, they compare the predicted treatment when using causal forests
based on entrepreneur characteristics with the treatment effect when the subsidy is
allocated based on community members’ rankings of the entrepreneurs. They find
that peer rankings predict returns over and above observable characteristics, but that
making the rankings public encourages lying, limiting their naive use for subsidy
allocation.

8.3.6 The problem of estimating treatment heterogeneity
with endogeneity

Athey et al. (2019) extend the estimation of treatment heterogeneity mentioned
above to the case where there is potential endogeneity. The objective is to measure
the causal effect of a policy while recognizing that the intervention and the out-
come are linked by unobserved factors. The assumption of selection on observables
(8.1) no longer holds, but instrumental variables are assumed to be available. For
example, one may be interested in the causal effect of motherhood on female labor
market participation. In this context, the instrumental variable traditionally used in
the literature is the binary variable “mixed children,” which means having children
of different genders. The idea is that the desire to have children of different genders
will impact the number of children but will not have a direct impact on labormarket
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participation. Athey et al. (2019) consider the following model:

Yi = μ(Xi) + τ(Xi)Di + εi, (8.14)

E[Ziεi|Xi = x] = 0, E[εi|Xi = x] = 0 ∀x ∈  .

In this context, τ is our parameter of interest, the causal effect of D on Y, μ is the
nuisance parameter, and ε is a noise term correlated with Di.

Remark 8.6 LinkwithNPIV

Note that model (8.14) is a very particular case of the so-called nonparametric instrumental
variable (NPIV) model (see e.g., Chapter 3; Newey and Powell, 2003; Darolles et al., 2011),
which takes the form:

Yi = φ(Di, Xi) + ε, E[Ziεi|Xi = x] = 0, E[εi|Xi = x] = 0,

whereφ(Di, Xi) = τ(Xi)Di +μ0(Xi). τ(·) is the heterogeneous causal impact ofDi on Yi using
Zi as an instrument.

Using the following notations

m(Wi; τ, μ) := (Yi – τ(Xi)Di – μ(Xi)) (
Zi
1 ) ,

where Wi = (Xi, Yi,Di,Zi), then estimation is based on the following moment
conditions, for all x ∈  ,

M(x; τ, μ) := E[m(Wi; τ, μ)|Xi = x] = 0. (8.15)

Specifically, when we have only one instrument Z with non-zero Cov (D,Z|X = x)
for all x ∈  , then note that τ(x) is identified from the moment conditions (8.15) as
τ(x) = Cov(Y,Z|X = x)/Cov(D,Z|X = x).

At a specific point x, the idea is to use random forests to compute the weights αi(x)
that measure the importance of the i-th observation in the estimation of τ(x) by the
moment equation,

(̂τ(x), μ̂(x)) ∈ argmin
τ,μ

{
‖
‖
‖

n
∑
i=1

αi(x)m(Wi; τ, μ)
‖
‖
‖2
} ,

where αi(x) := 1 {Xi ∈ L(x)} /|{i : Xi ∈ L(x)}| and ‖ · ‖2 is the Euclidean norm. If
there exists a unique solution (̂τ(x), μ̂(x)), then it solves

n
∑
i=1

αi(x)m (Wi; τ̂(x), μ̂(x)) = 0.
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The idea is then to extend the previous random forests to learn the weights αi using
the data and obtain an asymptotically normal estimator τ̂ of τ. The main difference
compared to the case where Assumption (8.1) is satisfied is that both τ and μ are
implicitly defined.

8.3.7 The gradient tree algorithm

The algorithm computes the splits (and thus the weights and the estimator) recur-
sively. We start with a parent node P that we want to split into two children C1,C2
using a cut aligned with the axis, generating the best improvement in the accuracy
of our estimator τ̂, meaning minimizing:

err(C1,C2) =
2
∑
j=1

P (Xi ∈ Cj|Xi ∈ P)E [(̂τCj( ) – τ(Xi))2 |Xi ∈ Cj] ,

where τ̂Cj( ) are adapted on the children Cj in the first part of the training sample . However, we do not have access to an unbiased direct estimate of err(C1,C2).
This leads Athey et al. (2019) to propose a new procedure:

1. In a labeling step, we compute (̂τP( ), μ̂P( )) in the parent node using

(̂τP( ), μ̂P( )) ∈ argmin {
‖
‖‖‖

∑
{i∈ , Xi∈P}

m (Wi; τ, μ)
‖
‖‖‖2
} , (8.16)

then we compute the gradients with respect to τ, μ:

AP := 1
|{i : Xi ∈ P}| ∑

{i: Xi∈P}
∇m (Wi; τ̂P, μ̂P)

= 1
|{i : Xi ∈ P}| ∑

{i: Xi∈P}
( –DiZi –Zi

–Di –1 ) .

Note that in the instrumental variables model (8.14), the minimization prob-
lem in (8.16) has an explicit solution

( τ̂P( )
μ̂P( ) ) =

⎛
⎜⎜
⎝

∑{i: Xi∈P} Zi(Yi–YP)
∑{i:Xi∈P} Zi(Di–DP)

1
|{i : Xi ∈ P}| ∑{i:Xi∈P} (Yi – DîτP( ))

⎞
⎟⎟
⎠
,

where YP = ∑{i: Xi∈P} Yi/|{i : Xi ∈ P}| and DP = ∑{i: Xi∈P} Di/|{i : Xi ∈ P}|.
Then we compute the pseudo-results:

ρi := –(1, 0)AP
–1m (Wi; τ̂P, μ̂P) ∈ R, (8.17)

where (1, 0) is the vector in R2 that takes the coordinate of τ.
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2. In a regression step, we perform a CART regression on the pseudo-results,
meaning we find the partition that maximizes the criterion:

Δ̃(C1,C2) =
2
∑
j=1

1
|{i : Xi ∈ Cj}|

( ∑
{i: Xi∈Cj}

ρi)
2

. (8.18)

Then, we relabel the observations in each child by solving the estimation
equation.

The motivation for this strategy comes from the fact that using Δ̃(C1,C2) as
a criterion is a way to approximate the true error err(C1,C2). Indeed, Propo-
sition 1 in Athey et al. (2019) states that if: 1) AP is a consistent estimator of
∇E [m (Wi; τ̂P, μ̂P) |Xi ∈ P]; 2) the parent node has a radius smaller than r > 0;
3) the regularity assumptions of Theorem 8.2 are satisfied; 4) the number of obser-
vations in the children nodes is considered fixed and large compared to 1/r2, then:

err(C1,C2) = K(P) – E [Δ̃(C1,C2)] + o(r2), (8.19)

where K(P) is a deterministic term related to the uniformity (purity) of P.

Remark 8.7 Influence function

The intuition for using the pseudo-results ρi comes from the proof of the asymptotic normal-
ity for Z-estimators, which are estimators of θ0 based on the moment condition

E [mθ0(Xi)] = 0.

Using the asymptotic representation of the Z-estimator θ̂n, for example in Theorem 5.21
page 52 of Van der Vaart (1998),

θ̂n = θ0 + 1
n
∇m–1

θ0

n
∑
i=1

mθ0(Xi) + op (
1
√n

) , (8.20)

we obtain that the influence of the n-th observation on the estimator is given by

θ̂(X1, . . . , Xn) – θ̂(X1, . . . , Xn–1)

= 1
n
∇m–1

θ0mθ0(Xn) +
1
n
∇m–1

θ0

n–1
∑
i=1

mθ0(Xi) –
1

n – 1∇m
–1
θ0

n–1
∑
i=1

mθ0(Xi)

= 1
n
∇m–1

θ0mθ0(Xn) –
1

n(n – 1)∇m
–1
θ0

n–1
∑
i=1

mθ0(Xi)

= 1
n
∇m–1

θ0mθ0(Xn) + oP(1),
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which has the same shape as ρi. The update of the estimator error when dividing the parent
P into two children (C1,C2) is approximated via the result (8.19) using the average of the
influence functions on C1 and C2. This strategy is similar to the analysis of the asymptotic
behavior of a Z-estimator using (8.20).

8.3.8 Central limit theorem for generalized random forests

We only study the case of the triangular model (8.14) and we refer to Athey et al.
(2019) for the more general case of asymptotic normality for generalized random
forests (GRF hereafter). We denote by

V(x) = ∇E [m(Wi; τ, μ)|Xi = x]

= – ( E [DiZi|Xi = x] E [Zi|Xi = x]
E [Di|Xi = x] 1 ) ,

the dependent pseudo-variables ρ∗
i which are oracles (that is to say not accessible)

given by
ρ∗
i (x) = –(1, 0)V (x)–1m(Wi; τ(x), μ(x)) ∈ R

and let the resulting pseudo-forest be

τ̃∗(x) := τ(x) +
n
∑
i=1

αi(x)ρ∗
i (x) =

n
∑
i=1

αi(x) (τ(x) + ρ∗
i (x)) .

τ̃∗(x) is useful as it has the same form as the basic element for learning in the
U-statistic studied in Wager and Athey (2017). Thus, the tools developed in Wager
andAthey (2017) and in Section 8.3 can be applied, which establishes the asymptotic
normality of τ̂(x) under the condition that τ̂(x) and τ̃∗(x) are asymptotically close,
which is guaranteed by Assumption 8.5. τ̃∗(x) is the result of the ideal regression
forest trained with the dependent variables τ(x) + ρ∗

i (x).

Assumption 8.5 (Smoothness conditions for asymptotic normality of GRF).
Assume that:

– for fixed values of (τ, μ),

Mτ,μ(x) := E [m(Wi; τ, μ)|Xi = x] ;

is Lipschitz in the variable x;
– Regular identification: V(x) is invertible for all x ∈  . This comes from the
fact that the instrument is valid.

Theorem 8.2 (Asymptotic normality of GRF for instrumental variable model
8.14, Theorem 5 in Athey et al., 2019) Assume that we have i.i.d. samples
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Wi = (Xi,Zi, Yi,Di)ni=1 ∈ [0, 1]p × R × R × {0, 1}, and there exists ε> 0 such that
ε ≤ P(D = 1|X) ≤ 1 – ε. Suppose Assumptions 8.4 and 8.5 hold, and consider a
causal double sample random forest satisfying Assumption 8.3 with α ≤ 0.2. Sup-
pose β satisfies (8.12). Then, there exist C(·) and γ > 0, such that the estimator τ̂(x)
of the CATE at point x is asymptotically normal:

τ̂(x) – τ(x)
σn(x)

→d  (0, 1) ,

with σn(x) := sC(x)/(n log(n/s)γ).

Athey et al. (2019), just like Nie andWager (2020), recommend orthogonalizing the
variables Yi, Di, and Zi, with the leave-one-out preliminary estimators m̂(–i), p̂ (–i),
and ẑ (–i) of E [Yi|Xi = x], E [Di|Xi = x], and E [Zi|Xi = x], which gives

τ̂(·) =
∑n

i=1 αi(x) (Yi – m̂(–i)(Xi)) (Zi – ẑ(–i)(Xi))
∑n

i=1 αi(x) (Di – p̂(–i)(Xi)) (Zi – ẑ(–i)(Xi))
. (8.21)

This option is implemented in the R package grf. Confidence intervals can be
constructed for the value of the treatment effect at a point τ(x), such as

lim
n→∞

E [τ(x) ∈ (̂τ(x) ± Φ–1(1 – α/2)σ̂2
n(x))] = 1 – α,

from the fact that Var[τ̃∗(x)]/σ2n → 1 and using the definition of ρ∗
i (x) to construct

σ̂2
n(x).

8.3.9 Application to the heterogeneity of the effect of subsidized
training on traineesʼ income

Firstly, we strongly recommend consulting the simulations used in Athey andWager
(2019) using the grf package, which illustrate the performance of GRF.

Here we consider an application of GRF to estimate the heterogeneity of the
effect of subsidized training on participants’ future income. We use the data from
Abadie et al. (2002). We reanalyze data from the Job Training Partnership Act
(JTPA), a large-scale, government-funded training program. Individuals are ran-
domly assigned to the JTPA treatment group or the control group, where the
treatment consists of offering training. Only 60% of individuals in the treatment
group actually accepted training, but the random assignment of treatment provides
an instrument for treatment status. In addition, since only 2% of individuals receiv-
ing JTPA services are in the control group, the effect for the latter is interpreted as
the effect for those who are treated. See Abadie et al. (2002) for more details and an
alternative method of estimating the effects of this training on the earnings distribu-
tion based on quantile regression that deals with the endogeneity of the treatment.
We focus on the heterogeneity of the training effect based on interactions of baseline
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Table 8.1 The estimated treatment effect on 30-month earnings

ATE, OLS ATE, 2SLS ATE, RF ATE, GRF Quartile 1 Med. Quartile 3

Men 3,754 (536) 1,593 (895) 3,185 2,365 962 2,247 4,276
Women 2,215 (334) 1,780 (532) 1,843 1,634 706 1,408 2,053

characteristics: age, an indicator for high school completion, marital status, indica-
tors for Black and Hispanic race, perceptions of Aid to Families with Dependent
Children (AFDC), and a binary variable indicating whether one worked less than
13 weeks in the previous year. We denote by Y earnings at a 30-month horizon,
D enrollment in JTPA services, and Z service provision.

We train a generalized random forest on 80% of the sample, separating men and
women, and using instrumental variables (referred to as “GRF”) or not (referred to
as “CRF”). We establish several comparisons.

We compare the distributions of the predicted treatment effects for 20% of the
sample, which is our test sample, using GRF or CRF. Of course, a more in-depth
analysis of the results is necessary and could be done by reporting the precise esti-
mate of the treatment effect for subgroups of the sample (here, all covariates are
binary variables, so we cannot plot the estimated treatment as in the simulations of
the grf package). Similar to Abadie et al. (2002), the Table 8.1 shows that there is
a significant difference between the two. This highlights the importance of using
an instrumental variable in this context. The results from Table 8.1 can also be
compared to the quantile treatment effect (QTE) estimates on the test sample from
Abadie et al. (2002) using a quantile regression that accounts for endogeneity. The
two are very close, which is consistent, but the lack of a uniform confidence region
for the GRF prevents us from making further comparisons, such as testing whether
the effects are the same for two populations H0 : τ(x1) = τ(x2), for given x1, x2 ∈ 
vs H1 : τ(x1) ≠ τ(x2).

8.4 Inferenceon characteristics of heterogeneous effects

The previous sections have shown that inference on the CATE often requires
strong assumptions that may not always hold (e.g., uniformly distributed covari-
ates in causal forests) or are not testable. Furthermore, the practical implementation
of these methods often differs from their theoretical counterparts (e.g., tuning
parameters are chosen by cross-validation). There may be a trade-off between the
assumptions we are willing to make and the information we want to learn about the
target object. Thus, following a branch of the statistical literature (see, e.g., Lei et al.,
2017), Chernozhukov et al. (2017) propose to change the perspective on the CATE
andmake inference on selected key characteristics of theCATE rather than the true
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object itself. This change of objective still allows to describe the heterogeneity of the
effects while providing proper tests of some of its characteristics.

For simplicity of exposition, we present this approach in the case of experiments
where the propensity score is known, but note that the results can also be extended
to the case where we have a consistent estimator of the propensity score. Chang-
ing our parameters of interest allows to use many machine learning methods that
can be considered as proxies for the CATE, and to limit the number of assump-
tions we have to make (in particular, the resulting estimators from these methods
no longer necessarily need to be consistent). The idea is to post-process these
machine learning estimators to obtain consistent estimators of concise summaries
of the CATE, rather than of the CATE itself. The requirement that the propensity
score be known is an important constraint, but it is also a fairly common framework,
for example in randomized controlled experiments, possibly stratified by certain
observed variables.

The model is similar to that of Section 8.1: we observe the outcome variable
Y = DY(1)+(1–D)Y(0), the binary treatment variableD, the covariates X ∈ Rp, and
assume selection on observables 8.1 and the overlap assumption (∃ ε > 0, s.t. ε ≤
p(X) ≤ 1 – ε). For simplicity, we first consider that the propensity score p(x) :=
P(D = 1|X = x) known. We have the following model:

Y = μ0(X) + Dτ(X) + U, E [U|X,D] = 0, (8.22)

τ(X) = μ1(X) – μ0(X) = E[Y(1)|X] – E[Y(0)|X]. (8.23)

8.4.1 Estimation of key characteristics of CATE

Chernozhukov et al. (2017) propose to separate the i.i.d. data (Yi,Di,Xi) for
i = 1,…, n into an auxiliary sample (denoted DataA) and a main sample (denoted
DataM). The first step is to estimate x → μ0(x) and x → τ(x) on the auxiliary sample.
The following estimators are the estimators of μ0 and τ respectively, resulting from
a machine learning algorithm (any algorithm can be considered):

m0 : x → m0(x|DataA), (8.24)

T : x → T(x|DataA). (8.25)

m0 and T are called ML proxy predictors because no assumption about their per-
formance is imposed. They can simply be proxies for the true functions. Then,
they propose to reprocess these estimators to make inference on the following key
characteristics of the CATE on the main sample:

1. the best linear predictor (BLP) of the CATE τ(·) based on the approximate
predictor T(·);

2. sorted group average treatment effects (GATES), which is the average of τ(·)
over different groups induced by the heterogeneity of the estimator T(·);
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3. classification analysis (CLAN), which is the average of the features X over the
groups induced by the quantiles of T(·).

Best linear predictor (BLP) of the CATE. The first key characteristic (1), the BLP
of the CATE using the proxy T, is defined as the linear projection of the CATE onto
the plane spanned by 1 and this proxy in the L2(P) space:

BLP[τ(X)|T(X)] = argmin
f (X)∈Span(1,T(X))

E [(τ(X) – f (X))2]

= E [τ(X)] + Cov(τ(X),T(X))
Var(T(X)) (T(X) – E[T(X)]) (8.26)

= b1 + b2 (T(X) – E[T(X)]) ,

where

(b1, b2) ∈ argmin
(B1,B2)∈R2

E [(τ(X) – B1 – B2T(X))2] . (8.27)

We do not observe τ(·), but we actually observe an unbiased signal of τ(·), which is:

E [ D – p(X)
p(X)(1 – p(X))Y

|||X] = τ(X) (8.28)

and from the auxiliary sample A, we can estimate a proxy T(·) for τ(·). Thus, we can
estimate Cov(τ(X),T(X))/Var(T(X)) using (8.28) and the regression:

w(X)(D – p(X))Y = β1 + β2 (T(X) – E[T(X)]) + ε, (8.29)

E [ε ( 1
T(X) – E[T(X)] )] = ( 0

0 ) , (8.30)

where w(X) = ((1 – p(X))p(X))–1.

Theorem 8.3. (Convergence of the estimator of the best linear predictor, Theorem 2.2
in Chernozhukov et al., 2017) Consider the functions x ↦ T(x) and x ↦ m0(x)
as fixed and the propensity score p known. Suppose that Y and X have finite second
moments and that E [XX ′] is full rank. Then, take (β1, β2) defined as in (8.29),
which also solves the problem (8.27), so that

β1 = E [τ(X)] and β2 = Cov(τ(X),T(X))
Var(T(X)) .

Several remarks are in order. First, identification is constructive and simple: the esti-
mation procedure of weightedMCO is described in 8.4.3. Second, this strategy does
not assume that the estimatorT(X) is a consistent estimator of τ(X), which allows the
use of the high-dimensional parameter p ≫ n. However, we only estimate the best
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linear projection of τ onto (T(X), 1), which means that if T(X) is a poor predictor,
this feature tells us very little about the true τ. Furthermore, unlike in Section 8.1,
we assume that the propensity score p is known here. Finally, note two interesting
extreme cases:

– if T(X) is a perfect approximation of τ(X) and τ(X) is not a constant, then
β2 = 1;

– if T(X) is completely noisy, uncorrelated with τ(X), then β2 = 0.

Testing whether β2 = 0 is equivalent to conducting a simple test of the joint hypoth-
esis that there is heterogeneity and that T(X) is relevant (which is a problem if it is
not rejected, as the two hypotheses cannot be separated).

Remark 8.8 Alternative estimator

To reduce the noise generated by the Horvitz–Thompson type weight H := (D – p(X))/
(p(X)(1 – p(X))) in (8.30), Chernozhukov et al. (2017) recommend using the following
regression instead of (8.29):

w(X)(D – p(X))Y = μ′Z1H + β0 + β1 (T(X) – E[T(X)]) + ε,

where Z1 = (1,m0(X),T(X)).

Sorted group average treatment effects. We can also divide the support of the
machine learning predictor T(X) into distinct regions to define groups of sim-
ilar treatment response and make inferences about the expected effect of their
treatment:

GATES : E [τ(X)|G1] ≤ · · · ≤ E [τ(X)|GK] ,

for Gk = 1{lk–1 ≤ T(X) ≤ lk} with –∞ = l0 ≤ l1 · · · ≤ lK = ∞. To do this, Cher-
nozhukov et al. (2017) consider the regression of the unbiased signalw(X)(D–p(X)Y
on the indicators 1 {i ∈ G1} , . . . , 1{i ∈ GK}. The resulting projection parameters are
the GATES.

8.4.2 Inference for key features of the CATE

For the following key features of the CATE:

– θ = β2, the parameter weighting the predictor of CATE heterogeneity (based
on the BLP);

– θ = β1 + β2(T(x) – E [T]), the individual prediction of τ.
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Chernozhukov et al. (2017) also propose methods for making inference by address-
ing the two sources of uncertainty that arise when using sample-splitting methods
(see, for example, Section 5.3). Specifically, the use of different partitions into two
parts {A,M} of the initial sample and the aggregation of different estimations θ̂A
provide:

– conditional uncertainty, which is the uncertainty of the estimation concerning
the parameter θ, conditionally on the data division;

– variational uncertainty, which is induced by the sample-splitting.

To perform inference with methods using sample-splitting, it is necessary to adjust
the normal confidence level in a specific way. Denote:

– the lower median (which is the usual median) by

Med(X) := inf {x ∈ R : PX (X ≤ x) ≥ 1/2} ;

– the upper median by Med(X) := sup {x ∈ R : PX (X ≥ x) ≥ 1/2} (the next
distinct quantile of a random variable);

– Med(X) := (Med(X) + Med(X))/2,

where for a continuous variable these notions coincide. We precise the two sources
of uncertainty, which arise from the repeated use of the partitions {A,M} of the initial
sample {Yi,Di,Xi}ni=1:

– Conditional uncertainty: conditionally on the data of the sample A (hereafter
denoted DataA), the ML estimators from the previous sections imply that, as
the cardinality of the setM (denoted |M|) goes to infinity, with high probability
and under the assumptions of Theorem 8.3:

P (θ̂A – θA
σ̂A

≤ z||| DataA) → Φ(z),

where Φ is the c.d.f. of the standard normal distribution. The following condi-
tional confidence intervals are obtained:

P(θA ∈ [LA,UA]| DataA) = 1 – α + oP(1),

where [LA,UA] := [̂θA ± Φ–1(1 – α/2)σ̂A].
– Variational uncertainty: To perform unconditional inference on the sample-

splitting performed, Chernozhukov et al. (2017) propose:

– either adjusting the standard p-values p+
A = 1 – Φ (θ̂A – θA

σ̂A
) and

p–
A = Φ (θ̂A – θA

σ̂A
) for the testing the null H0 : θA = θ0 respectively
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the one-sided hypotheses: H1 : θA > θ0 or H1 : θA < θ0, to account for the
sample-splitting;

– or aggregating the estimators and adjusting the confidence intervals (see, for
example, Section 5.3).

Note that conditionally on DataA, θ̂A is a random variable.
Adjusting p-values to account for sample-splitting. We describe the first option

to handle the variational uncertainty. First, note that underH0, asymptotically p±
A ~ (0, 1) conditionally on the dataA, but randomness still remains conditionally on

the whole dataset. Thus, Meinshausen et al. (2009) and Chernozhukov et al. (2017)
suggest using p± as the respective p-values for the one-sided tests, and 2min(p+, p–)
for the two-sided one, where

p± = Med(p±
A|Data) ≤ α/2. (8.31)

Thus, in the former case we would reject the null hypothesis if p± < α (where α is the
test level). This rule is based on the fact that themedianM of J uniformly distributed
random variables (not necessarily independent) satisfies P(M ≤ α/2) ≤ α, thus con-
trolling the type I error. Theorem 8.4 shows the uniform validity (over distributions
P in  , all possible data distributions satisfyingH0) of the sample-splitting adjusted
p-values.

Assumption 8.6 (Asymptotic uniform level for conditional testing). Suppose that all
partitions DataA of the data in set  are “regular,” in the sense that under H0, for
all x ∈ [0, 1],

sup
P∈ |PP(p±

A ≤ x|DataA ∈ ) – x| ≤ δ = o(1),

and infP∈ P(DataA ∈ ) converges to 1.

Assumption 8.6 guarantees that the unconditional distribution of the p-value
p±
A asymptotically converges to the distribution of a uniform random variable,

uniformly over the class  .

Theorem 8.4 (Asymptotic uniform level, Theorem 3.1 in Chernozhukov et al., 2017)
If Assumption 8.6 holds, then under H0, we have

sup
P∈P

PP(p± ≤ α/2) ≤ α + 2δ = α + o(1).

Adapted estimator and confidence intervals. Chernozhukov et al. (2017) pro-
pose to aggregate estimators obtained from multiple partitions of the initial sample
through:
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θ̂ := Med (̂θA|||Data)

and to report the following confidence intervals with nominal level 1 – 2α:

[l; u] := [Med(LA|Data);Med(UA|Data)],

where [LA,UA] := [̂θA ± Φ–1(1 – α/2)σ̂A]. Theorem3.2 inChernozhukov et al. (2017)
shows the uniform validity of this type of confidence interval, using the validity of
the confidence interval CI introduced earlier, which is narrower but more difficult
to compute.

8.4.3 Algorithm: inference on themain features of CATE

We describe the algorithm to perform inference on the main features of CATE,
before considering simulation and applications in the following two sections. Con-
sider the i.i.d. sample (Yi,Xi,Di)ni=1. These algorithms based on alternative estimators
for BLP and GATES are more stable (see Chernozhukov et al., 2017, for a formal
proof of theoretical equivalence).
Step 0We fix the number of partitions (sample-splitting) S and the significance level
α.
Step 1 We compute the propensity scores p(Xi).
Step 2 We consider S partitions into two sets of indices i ∈ {1, . . . , n} in the main
sample M, and the auxiliary sample A. For each partition s ∈ {1, . . . , S}:

Step 2.1 Fit and train each ML method separately to learnm0 and T using A.
For each observation i inM, we compute the predicted base effectm0(Xi) and
the predicted treatment effect T(Xi).
Step 2.2 We estimate the BLP parameters using weighted OLS in M:

Yi = α̂′Z1,i + β̂1 (Di – p(Xi)) + β̂2 (Di – p(Xi)) (T(Xi) – TM) + ε̂i,

for i ∈ M, where TM is the average of T(Xi) in M, which is such that

1
|M| ∑i∈M

w(Xi)̂εiZi = 0,

where

Zi = [Z
′

1,i,Di – p(Xi), (Di – p(Xi)) (T(Xi) – TM)]
′

,

w(Xi) = (p(Xi)(1 – p(Xi)))–1,
Z1,i = (1,m0(Xi),T(Xi))

′.
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Step 2.3 We estimate the GATES parameters using weighted OLS in M via

Yi = α̂′Z1,i +
K
∑
k=1

γ̂k (Di – p(Xi)) 1 {T(Xi) ∈ Ik} + ε̂i, i ∈ M

such that
1

|M| ∑i∈M
w(Xi)̂εiWi = 0,

Wi = [Z
′

1,i, {(Di – p(Xi))1 {T(Xi) ∈ Ik}}Kk=1]
′

,

Ik = [lk–1, lk], lk = qk/K(T(Xi)).

Step 2.4 We compute performance measures for each ML method

Λ̂ = ||β̂2||
2
V̂ar (T(X)) and Λ̂ =

K
∑
k=1

γ̂2kP (T(X) ∈ Ik) .

Step 3 We select the ML methods that maximize Λ̂ and Λ̂.
Step 4 We compute estimates, confidence level (1 – α), and conditional values of

p for all parameters of interest.
Step 5 We compute adjusted confidence intervals (1 – 2α) and adjusted p-values

using the variational method described in Section 8.4.2.
Several remarks are in order. First, note that maximizing Λ̂ in step 2.4 is equiva-

lent to maximizing the correlation between the ML predictor proxy and the true τ.
Maximizing Λ̂ in step 2.4 is equivalent to maximizing the part of the variation of τ
that is explained by

K
∑
k=1

γ̂k (Di – p(Xi)) 1 {T(Xi) ∈ Ik} .

8.4.4 Simulations

We illustrate the behavior of the introduced tools on simulations in this section and
refer to Exercise 15.4 for an application to the heterogeneity of the gender wage gap.
We implement this strategy in a framework where

τ(x) = ζ(x1)ζ(x2), where ζ(u) = 1 + 1
1 + e–20(u–1/3)

,

based on an adaptation of the code github.com/demirermert/MLInference.

http://github.com/demirermert/MLInference
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Table 8.2 Performancemeasures table for GATES and BLP using four ML
methods

Elastic net Boosting Neural networks Random forests

Λ̂ 8,359 8,444 8,507 8,379
Λ̂ 0,882 0,941 0,968 0,892

Note: Estimation based on 100 splits.

Table 8.3 Estimated ATE and parameter β2 table for BLP.

Neural networks Neural networks Boosting Boosting True

ATE HET ATE HET ATE
2,758 1,003 2,759 0,910 2,753

90% CI (2,679 ; 2,836) (0,921 ; 1,085) (2,680 ; 2,838) (0,832 ; 0,986)

Note: Estimation using 100 partitions for the two best methods according to the selection procedure based on Λ:
neural networks and boosting trees. β2 is denoted HET.

Table 8.4 Average estimated characteristics for the most and least affected groupsE [Xk|G5]
andE [Xk|G1].

Neural networks Boosting

Most Least Difference Most Least Difference
affected affected affected affected

X1 0.777 0.235 0.539 0.720 0.248 0.475
(0.762 ;
0.793)

(0.219 ; 0.252) (0.517 ; 0.561) (0.703 ; 0.737) (0.231 ; 0.264) (0.451 ; 0.498)

X2 0.768 0.238 0.529 0.715 0.268 0.453
(0.752 ;
0.785)

(0.221 ; 0.256) (0.504 ; 0.553) (0.698 ; 0.734) (0.250 ; 0.285) (0.427 ; 0.478)

Note: Realized based on 100 divisions (see CLAN in Chernozhukov et al., 2017) for the two variables X1 and X2
with robust confidence intervals for the four used ML methods. “Least affected” corresponds to group G1 and
“most affected” corresponds to group G5.

The neural networkmodel is able to adapt well to heterogeneity, as β2 is close to 1.
This is reassuring because the shape of ζ is a sigmoid, which is the base function of
the neural network here (i.e., the activation function, see Section 2.8). Now let’s look
at what we call the “CLAN” in Table 8.4, which are the average characteristics for the
most and least affected groups E [Xk|G5] and E [Xk|G1] for the two variables X1 and
X2. We show that ML methods are able to correctly identify that those in the upper
right corner (resp. lower left corner) in the (X1,X2) space are those who benefit the
most (resp. the least) from the treatment.
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Figure 8.2 GATES estimate with robust confidence intervals.
Note: Estimation based on 100 partitions for the four usedmachine learning methods. The
quantiles of the true treatment effect are min: 1.00, 25%: 2.00, 50%: 2.54, 75%: 3.92, max: 3.99.

8.5 Summary

Key concepts

Heterogeneous treatment effects, conditional average treatment effect (CATE), nuisance
parameters, R-learner, “honest trees” property, bagging, causal forests, segmentation crite-
rion, endogeneity, gradient tree, generic machine learning, key features of CATE, best linear
predictor (BLP) of CATE, variational uncertainty.

Additional references

Athey andWager (2019) develop an application of causal random forests using thegrfpack-
age to estimate, based on data from the national study of learning attitudes, the effect of a
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“nudge” intervention (indirect suggestions) to instill in students the belief that intelligence
can be developed through academic success. Baiardi and Naghi (2024) revisit influential
empirical studies with the tools presented in this chapter, providing very interesting exam-
ples of the value added of such tools.

Codeanddata

The two-step estimation of (8.5) proposed by Nie and Wager (2020) is implemented in the
R package rlearner, available at github.com/xnie/rlearner. The code and data associated
with Athey and Wager (2019) are provided on github.com/grf-labs. Simulations for Section
8.3.9 are also available at this address.

The data from Abadie et al. (2002) for the application in Section 8.3.9 can be downloaded
from economics.mit.edu/faculty/angrist/data1/data/abangim02.

The simulations in Section 8.4.4 use an adaptation of the code available at github.com/
demirermert/MLInference. This github code also contains the dataset and code to reproduce
the application in Chernozhukov et al. (2017).

Questions

1. What fundamental problem arises when using standard machine learning methods
to estimate causal effects?

2. Explain briefly the problem highlighted by this citation from Athey (2017) and
propose a method seen in this chapter to overcome it. “[In the context of evaluating
the allocation of a treatment whose aim was to retain customers]. The overlap
between the group with highest risk of [not buying again] and the group who would
respond most to interventions was only 50 %. Thus, treating the problem of retaining
customers as if it were a prediction problem yielded lower payoffs to the firm.”

3. Explain intuitively what random splits in the construction of causal random forests
bring in theory. What do we lose compared to causal random forests with optimally
selected splits?

4. Can we estimate the conditional average treatment effect

τ : x ↦ E [Y(1) – Y(0)|X = x]

using the generic machine learning approach? Discuss.
5. We want to make inference on a parameter θ using only one sample, which is divided

into two parts data = {A,M}. We use the subsampleM to train an ML estimatorθ̂. We
then use the subsample A to evaluate it, which leads to the estimatorθ̂A. What type of
inference can wemake? What problem does it raise?

Continued

http://github.com/xnie/rlearner
http://github.com/grf-labs
http://economics.mit.edu/faculty/angrist/data1/data/abangim02
http://github.com/demirermert/MLInference
http://github.com/demirermert/MLInference
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Continued

6. Explain intuitively why partitioning the sample is useful in the estimation of causal
random forests to obtain the convergence of the estimator for heterogeneous
treatment effects. What is this property called?

7. What are the main differences between random forests and causal random forests?
How are they implemented in practice?

8. Describe the best linear predictor (BLP) of CATE using twomachine learning proxies
m0 and T for, respectively,E [Y|X,D = 0] and the CATE.

8.6 Proofs andadditional results

Proof of Lemma 8.1. Let 0 < η < 1 and denote by

– c(x) the number of splits leading to the leaf L(x),
– cj(x) the number of splits creating the leaf L(x) along the axis j.

Using the fact that T is α-regular, the minimum number of observations in L(x) is
sαc(x), α > 1, which is thus less than or equal to 2k – 1. We obtain

c(x) ≥ c0 := log (s/(2k – 1))
log(α–1) .

Using the fact that T is a randomly divided tree, with high probability,

cj(x) ≥ Z, Z ~ Binomial (c0,
δ
p) ,

meaning that the minimum total number of splits leading to L(x) is c0 and at each
of these nodes, the probability of choosing the j-th coordinate is bounded below by
δ/p. Then, we use the Chernoff multiplicative bound

P (cj(x) ≤ (1 – η)μ0) ≤ e–η2μ0/2, (8.32)

where μ0 = E[Z] = δc0/p. Finally, Wager andWalther (2015) show that the diameter
of the leaf along the axis j is related to the number of observations in the leaf, when
the covariates are uniformly distributed, L(x) via

Diam(L(x)) ≤ (1 – α)0.99cj(x).

Combining this inequality with (8.32) leads to the result. □



Inference on heterogeneous effects 167

Proof of Lemma 8.2. We start with Definition (8.8) which implies E [μ̂(x)] =
E [T(x;Zi)]. Then, we define μ̃(x) as μ̂(x) by replacing αi(x) with

α̃i(x) = 1 {Xi ∈ L(x)}
s|L(x)| ,

where |L(x)| is the Lebesgue measure of the leaf L(x). Using the honesty assumption
(i.e., Y is independent of L(x)) for the third equality and

P (Xi ∈ L(x)|L(x)) = |L(x)|

for the fourth equality,

E[μ̃(x)] – μ(x)

= E[T(x;Z)] – E[Y|X = x]

= E [E [ ∑
i∈{i1, . . . ,is}

1 {Xi ∈ L(x)}
s|L(x)| Yi

|||L(x),Xi ∈ L(x)]] – E[Y|X = x]

= 1
s ∑
i∈{i1, . . . ,is}

E [1 {Xi ∈ L(x)}
|L(x)| |L(x)]E[E[Yi|Xi ∈ L(x)]] – E[Y|X = x]

= E[E[Y|X ∈ L(x)] – E[Y|X = x]].

Then, using the fact that x↦ E[Y|X = x] is Lipschitz, there exists a constant C > 0,

|E[Y|X ∈ L(x)] – E[Y|X = x]| ≤ CDiam(L(x)). (8.33)

Moreover, using the fact that the diagonal length of a unit hypercube in dimension
p is√p,

{Diam(L(x)) ≥ √p ( s
2k – 1)

–α1δ/p
}

is a subset of
p

⋃
j=1

{Diamj(L(x)) ≥ ( s
2k – 1)

–α1δ/p
} ,

and using Lemma 8.1,

P (Diam(L(x)) ≥ √p ( s
2k – 1)

–α1δ/p
)

≤
p

∑
j=1

P (Diamj(L(x)) ≥ ( s
2k – 1)

–α1δ/p
)

≤ p ( s
2k – 1)

–α2δ/p
.
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We conclude by taking η = √log((1 – α)–1) ≤ 0.49 (thus 0.99(1 – η) ≥ 0.51, hence
the factor 1/2 in α3) and with E [μ̃(x) – μ̂(x)] =  (n–1/2). □

Key ideas for the proof of Theorem 8.1. A random forest is a U-statistic, which
means that it can be written as

μ = ( n
s )

–1

∑
i∈{1, . . . ,n}s, with i1<. . .<is

T(Zi1 , . . . ,Zis)

for a bounded function T (see Chapter 12 p.162 in Van der Vaart, 1998). Note that
under the assumptions of Ttheorem 8.1, the regression function being Lipschitz on
a closed bounded interval, it is bounded. The usual way to show the asymptotic
normality for U-statistics is to use the projection

∘
μ̂(x) of μ̂(x) onto the class  of all

statistics of the form
n
∑
i=1

gxi (Zi),

whereE [(gxi (Zi))
2] <∞, which is called the Hájek projection. The Hájek projection

can thus be understood as a linearization of our initial statistic.
Then, starting with μ̂(x) = (μ̂(x) –

∘
μ̂(x)) +

∘
μ̂(x), the proof consists in showing that

μ̂(x) –
∘
μ̂(x)

p⟶ 0 and applying the central limit theorem to the projection
∘
μ̂(x).

More precisely, we useProposition 8.1 (which is Lemma 11.10 in Chapter 11 of Van
der Vaart, 1998).

Proposition8.1 Let Z1, . . . ,Zn be independent random vectors, then the projection of
a random variable W with a finite second moment onto the class  is given by

∘
W = E [W] +

n
∑
i=1
(E [W|Zi] – E [W]) .

Proof of proposition 8.1. The proof follows from the fact that
∘
W belongs to  and

because we can verify that for all S ∈  ,

E [(W –
∘
W)S] = 0.

Indeed, for all i ∈ {1, . . . , n},

E [(W –
∘
W)gi(Zi)] = E

⎡⎢⎢⎢
⎣

(E [W|Zi] – E[
∘
W|Zi])

  
=0

gi(Zi)
⎤⎥⎥⎥
⎦

because for all j ≠ i, by independence, E [E [W|Zi] |Zj] = E [W]. □
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Next, an important result (see Theorem 11.2 in Van der Vaart, 1998), which
allows to reduce the asymptotic analysis of (W – E(W))/Sd (W) to that based on
the projection (

∘
W – E[

∘
W])/Sd(

∘
W), states that if the projection

∘
W satisfies

lim
n→∞

Var(W)

Var(
∘
W)

→ 1, (8.34)

then

W – E [W]
Sd (W) –

∘
W – E[

∘
W]

Sd(
∘
W)

p⟶ 0.

Thus, to prove the asymptotic normality of the random forest, one could try to show
(8.34). However, this is not true for regression trees. Therefore, Wager and Athey
(2017) show an adaptation close to this property (8.34) (i.e., regression trees are ν-
incremental), which states that under the conditions of Theorem 8.1, there exists
C1(·) such that

lim inf
s→∞

Var(
∘

T(x))
Var(T(x)) log(s)p ≥ C1(x), (8.35)

where for simplicity we denote T(x) := Eξ~Ξ [Tξ(x;Z1,Z2, . . . ,Zs)] (where the expec-
tation is only with respect to the randomness of ξ, so T(x) depends on Z1,Z2, . . . ,Zs).
Then, they use the independence of the observations and the symmetry permutation
of the trees T, for a subsample b of {1, . . . , n},

E [T(x;Zb,1, . . . ,Zb,s)|Zj = z] = { E [T(x; z,Zb,2, . . . ,Zb,s)] if j ∈ b
E [T(x;Zb,1,Zb,2, . . . ,Zb,s)] if j ∉ b

which in (8.8) yields that, for i ∈ {1, . . . , n}, with Cs
n = ( n

s ),

E[μ̂(x)|Zi = z] – E[μ̂(x)]

= ∑
b:i∈b

E[Eξ~Ξ[Tξ(x;Zb,1, .,Zb,s)]|Zi = z] – E [Eξ~Ξ [Tξ(x;Zb,1, .,Zb,s)]]
Cs
n

,

= (Cs
n)–1 Cs–1

n–1(E [Eξ~Ξ [Tξ(x; z,Z2, .,Zs)]] – E [Eξ~Ξ [Tξ(x;Z1,Z2, .,Zs)]])

= s
n (E [Eξ~Ξ [Tξ(x; z,Z2, . . . ,Zs)]] – E [Eξ~Ξ [Tξ(x;Z1,Z2, . . . ,Zs)]]),

and we have

∘
μ̂(x) = E [μ̂(x)] +

n
∑
i=1

(E[μ̂(x)|Zi] – E [μ̂(x)])

= E [T(x)] + s
n

n
∑
i=1
(E [T(x)|Zi] – E [T(x)]) . (8.36)
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In addition,

∘
T(x) = E [T(x)] +

s
∑
i=1

(E[T(x)|Zi] – E [T(x)]). (8.37)

Using (8.36)–(8.37), we obtain σ2n(x) = sVar(
∘
T(x))/n. σ2n(x) is the variance of

∘
μ̂(x). Lemma 7 in Wager and Athey (2017) shows that

E [(μ̂(x) –
∘
μ̂(x))

2
]

σ2n(x)
≤ ( sn)

2 Var(T(x))
σ2n(x)

= s
n
Var(T(x))

Var(
∘
T(x))

(avec σ2n(x) = s
nVar(

∘
T(x))),

which, with (8.35), results in

E [(μ̂(x) –
∘
μ̂(x))

2
]

σ2n(x)
→ 0.

It remains to be shown that the right hand side of Equation (8.36) satisfies the
conditions of the Lyapunov central limit theorem.

Proof of Theorem 8.3. We show only that

β2 = Cov(τ(X),T(X))
Var(T(X)) ,

since the proof for β1 follows a similar reasoning. The normal equations (8.30)
identifying (β1, β2) give, for β2, the following values:

β2 = Cov(w(X)(D – p(X))Y,T(X) – E [T(X)])
Var(T(X) – E [T(X)]) . (8.38)

The denominator is equal to Var(T(X)). Now, since T(X)–E [T(X)] has a zeromean,
the numerator of (8.38) is given by

Cov(w(X)(D – p(X))Y,T(X) – E [T(X)]) (8.39)

= E [w(X)(D – p(X))Y(T(X) – E [T(X))]] .
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Recall that Y = μ0(X) +Dτ(X) +U, so the result comes from (8.39) and the following
three points. First, using the law of iterated expectations,

E [w(X)(D – p(X))μ0(X)(T(X) – E [T(X)])]

= E[w(X)μ0(X)(T(X) – E [T(X)])E [D – p(X)|X]  
=0

]

= 0.

Then, we have D|X ~ (p(X)) so that

E [w(X)(D – p(X))D|X] = E [w(X)(D – p(X))2|X] = 1,

and therefore

E [w(X)(D – p(X))Dτ(X)(T(X) – E [T(X))]] = E [τ(X)(T(X) – E [T(X))]]
= Cov (τ(X),T(X)) .

Finally, we have

E [w(X)(D – p(X))U(T(X) – E [T(X)])]

= E[w(X)(D – p(X))E [U|D,X]  
=0

(T(X) – E [T(X)])]

= 0,

which leads to the result. □

Intuitions for the proof of Theorem 8.2 The proof follows from the fact that τ̃∗(x)
is formally equivalent to the result of a regression forest, so using Theorem 8.1,

τ̃∗(x) – τ(x)
σn(x)

→d  (0, 1) .

Then, according to Theorem 3 (consistency of (̂τ, μ̂)) and Lemma 4 of Athey et al.
(2019) we have

n
s (τ̃

∗(x) – τ̂(x))2 = p ((
s
n)

2/3
) , (8.40)

so (τ̃∗(x) – τ̂(x))/σn
p⟶ 0 which gives the result. The technical part of the theorem

is the proof of Lemma 4 which gives (8.40). □
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Proof of Theorem 8.4. p± ≤ α/2 is equivalent to E[1 {p±
A ≤ α/2} |Data] ≥ 1/2. This

implies

PP (p± ≤ α/2) = EP[1{EP[1 {p±
A ≤ α/2} |Data] ≥ 1/2}]

≤ PP (p±
A ≤ α/2) /(1/2) (using Markov’s inequality)

≤ 2 (α/2 + δ + PP(Data ∉ )) (using assumption 8.6).

□



Chapter 9
Optimal policy learning

Consider the problem of a planner who has limited budget resources to subsidize
a program. It is legitimate to wonder whether it is possible to inform their decision
by learning the optimal allocation policy for this program (optimal policy learn-
ing) from the results of a randomized experiment. The problem therefore consists
of determining a fixed allocation of resources, which constitutes the treatment, to a
target population. Several objectives can be pursued, but for simplicity, we assume
that the planner wants to maximize the expected average utility for this population,
given the budget constraints. In practice, and for simplicity, utility will be associated
here with a directly measurable outcome variable, such as return to employment or
short/long-term income for a training program, or specified through a functional
form, assumed to be known.

Section 9.1 begins by formally introducing the problem and providing the form of
the optimal policy in a simplified framework. After introducing the minimax regret
criterion as a performance measure, Section 9.2.1 details the tools for estimating
the optimal policy by maximizing empirical welfare when the propensity score is
known. However, in many cases, the propensity score must be estimated. Section
9.2.2 describes how to adapt the developed tools to this context. Finally, Section 9.3
presents an application to the optimization of a training program.

9.1 Problem: optimal policy learning

9.1.1 Optimal policy in a simplified framework

We formally present the simplified framework used in Bhattacharya and Dupas
(2012). Let Y be the observed outcome at the individual level and D be a binary
treatment, which must be determined by a specific decision rule. The researcher
also has information X about the individuals. The latter is used to make the assign-
ment decision π :  → {0, 1}, where is the support of X. The function π represents
the policy of assigning individuals with characteristics X to the treatment or control
group. Note that π is a binary classifier. Here, we denote Y = DY(1) + (1 – D)Y(0),
where Y(0) and Y(1) are the potential outcomes of Y without and with treatment,
respectively. We further assume that the treatment can be considered as good as
random conditional on the observed variables (unconfoundedness).

Machine Learning for Econometrics. Christophe Gaillac and Jérémy L’Hour,
© Christophe Gaillac and Jérémy L’Hour (2025). DOI:
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Assumption 9.1 (Conditional independence).

D ⊥⊥ (Y(0), Y(1)) | X. (9.1)

In particular, this excludes the case where individuals with the most anticipated
effects based on certain unobservable variables are also themost likely to be treated.
Oneway tomodel this planner’s problem is to determine an allocation π :  → {0, 1}
such that the expected utility:

W(π) := E (Y(π(X))) = ∫
x∈

E [Y(π(X))|X = x] dFX(x) (9.2)

is maximized – here we assume, for simplicity, that utility and the outcome variable
Y are equivalent – subject to the constraint c ≥ E(π(X)), where c is an upper bound
on the fraction of individuals that can be treated, assumed to be proportional to the
budget constraint. By using Assumption 9.1 to decompose (9.2), the problem can be
rewritten as:

max
π(·)

∫
x∈

μ1(x)π(x) + μ0(x)(1 – π(x))dFX(x) (9.3)

s.t. ∫
x∈

π(x)dFX(x) ≤ c,

where μj(x) := E [Y| X = x, D = j], j ∈ {0, 1}. Under the same assumption 9.1,
τ(x) := E [Y(1) – Y(0)| X = x], the conditional average treatment effect (CATE), can
be decomposed as:

τ(x) = μ1(x) – μ0(x).
We then note that the objective function of problem (9.3) can be rewritten as:

∫
x∈

μ0(x) + τ(x)π(x)dFX(x).

Assumption 9.2 Assume that:

(i) for a δ ≥ 0, P(τ(X) > δ) > c (the constraint is relevant),
(ii) Fτ(X) is strictly increasing and τ(X) has a bounded support.

Assumption 9.2 (ii) implies that γ ∈  ↦ P (τ(X) ≥ γ) is decreasing.

Proposition9.1 Under assumptions 9.1–9.2, the optimal policy solution to (9.3) takes
the form:

π(x) = 1 {τ(x) ≥ γ} , γ s.t. c = ∫
x∈

π(x)dFX(x). (9.4)

The optimal policy (9.4) (or Bayes classifier) therefore consists of assigning treat-
ment to agents for whom the benefit exceeds the
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twofold: the benefit must first be estimated, and this policy is potentially very
complex to implement if the groups that benefit most from the treatment are highly
heterogeneous. In (9.4), γ is the (1 – c) quantile of the random variable τ(X), which
is unique when Fτ(X) is increasing. This problem therefore illustrates in a simple way
that knowledge of the heterogeneous treatment effect τ(·) would ideally allow for
efficient treatment allocation.

Remark 9.1 Dual formulation andextension

Note that the dual formulation of the problem is also interesting: we seek to estimate the
minimum cost to obtain a given average value of the outcome in the population:

min
π(·)

∫
x∈

π(x)dFX(x) (9.5)

s.t. ∫
x∈

μ1(x)π(x) + μ0(x)(1 – π(x))dFX(x) = b.

Note also that a direct extension of (9.3) allows us to handle heterogeneity in the cost of
treatment in the population h(·), which leads to the following modified budget constraint:

c = ∫
x∈

h(x)π(x)dFX(x),

and the solution to the modified problem (9.3):

π(x) = 1 {τ(x) – h(x) ≥ γ} , γ s.t. c = ∫
x∈

h(x)π(x)dFX(x).

More generally, it is interesting to identify the populations that benefit more or less
from the treatment. One limit that is not addressed in the above framework is the
fact that there can be negative externalities: treated agents will benefit at the expense
of non-treated agents. For example, Crépon et al. (2013) estimate these effects in
the labor market. Another limit is that the above approach via (9.4) suggests for
estimation an approach based on a plug-in estimate of the CATE to find the optimal
policy. However, the problem of learning the optimal policy appears to be simpler,
since we only want to determine a rule for treatment allocation (potentially under
constraints) and not precisely estimate the heterogeneity of the treatment effect.

9.1.2 Theminimax regret criterion

A trade-off emerges from this presentation: on one hand, the abundance of available
variables X would allow for a more precise, targeted treatment allocation. On the
other hand, the complexity of the allocation
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the available variables. This compromise becomes even more critical as the policies
obtained, in order to be implemented, must often comply with certain constraints
that limit the variables that can be used tomake the treatment decision, for example,
for legal or fairness concerns. This also limits the complexity of the policy: it must
often be clear, explainable, and easy to implement. This justifies the search for the
optimal policy within a class of policies Π that incorporate these constraints. We
do not assume that the optimal policy given by (9.4) belongs to the class Π and
we do not attempt to estimate it either. The objective, introduced and motivated in
Manski (2004) then Stoye (2009, 2012), is rather to learn, from the data of a random-
ized experiment and a given specification, the expected utility W and its empirical
counterpart, a policy π̂ that minimizes the regret

R(π) = W(π∗) –W(π), (9.6)

with respect to the best policy in the class Π,

π∗ = argmax{W(π) : π ∈ Π}

with a control on the worst-case regret (minimax regret criterion):

sup
Pn

E(R(π̂)),

whereE is the expectationwith respect to the distribution of the data (Yi,Di,Xi)ni=1.

9.2 Empiricalwelfaremaximization

We present the learning of the optimal policy through empirical welfare maximiza-
tion, (see Kitagawa and Tetenov, 2018), which consists of estimating W(π) and
considering a maximizer of this estimator. We start with the simple framework
where the propensity score is known in Section 9.2.1, and then explain how to
handle this additional complexity where we need to estimate this nuisance param-
eter in Section 9.2.2. There are, of course, now many variations of this initial
case, for example with fairness constraints (Viviano and Bradic, 2020), in natural
experiments (Athey and Wager, 2021), or in the presence of interactions (Viviano,
2019).

9.2.1 Empirical welfare maximization with known
propensity score

Consider the framework of a randomized experiment described above, under the
assumption of conditional independence (9.1). Similar to what is presented in the
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introductory example, and with the propensity score p(x) = E[D = 1|X = x], the
welfare criterion W(π) can be rewritten as:

W(π) = E [ YD
p(X)π(X) +

Y(1 – D)
1 – p(X) (1 – π(X))]

= E(Y(0)) + E [( YD
p(X) – Y(1 – D)

1 – p(X) ) π(X)] . (9.7)

We recognize in (9.7) a structure similar to the inverse propensity score estima-
tor described in (3.6). The idea proposed by Kitagawa and Tetenov (2018) is to
maximize the empirical welfare:

π̃ = argmax
π∈Π

Ŵ(π), (9.8)

where

Ŵ(π) = 1
n

n
∑
i=1
[ YiDi

p(Xi)
– Yi(1 – Di)

1 – p(Xi)
] π(Xi).

Remark 9.2 Complexity of a class of binary decisions

The Vapnik-Chervonenkis dimension (or VC-dimension, see Vapnik, 1998; Van der vaart and
Wellner, 1996) is often used to measure the complexity of a class of sets.

In our context, it is the largest value l ∈ N such that there exists a set of l points
xl = {x1, . . . , xl} in that is shattered byΠ: that is, for every vector v ∈ {0, 1}l there exists a
policy πv constrained to belong to the classΠ such that πv(xi) = vi, i = 1, . . . , l.

Consider examples with finite or infinite VC-dimension:

– Linear eligibility rules: the class of policies of the form π(x) = 1{β0 + x′β1 ≥ 0}, with
(β0, β1) ∈ Rp+1 has a VC-dimension VC(Π) = p + 1;

– Decision trees: the class of decision trees of depth L has a VC-dimension of the order of
2L log(p);

– Monotonic eligibility rules: for example, for x ∈ [0, 1]2, and if we decide to treat
agents such that x2 ≥ f(x1), where f is strictly increasing. Since any set of
points xl = {x1, . . . , xl} with xi = (ai, a2

i ), a1 < · · · < al can be shattered by Π, the
VC-dimension is infinite.

Assumption 9.3

– Overlap assumption: there exists η > 0 such that

0 < η ≤ p(x) ≤ 1 – η < 1, x ∈  . (9.9)
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– Bounded variables: there exists M < ∞ such that |Y| < M almost surely.
– Complexity of Π: The class Π has a finite Vapnik–Chervonenkis dimension
VC(Π) and is countable.

For simplicity, we will limit ourselves to the framework of finite VC-dimension in
this chapter, but note that Mbakop and Tabord-Meehan (2021) consider maximiza-
tion constrained to a collection of classes that approximate a more complex class,
potentially of infinite VC-dimension, including the monotonic policies mentioned
in the remark above. Let (M, η) denote the set of data distributions that satisfy
Assumptions (9.3).

Theorem 9. (Upper bound on the regret, Theorem 2.1 in Kitagawa and Tetenov,
2018) Suppose (9.3), then the following uniform control holds

sup
P∈(M,η)

EP (W(π∗) –W(π̃)) ≤ CM
η √

VC(Π)
n , (9.10)

where C is a constant, π∗ = argmax{W(π) : π ∈ Π}, and π̃ defined in (9.8).

Theorem 9.1 therefore shows that the expected regret in the worst case scenario of
data distribution P ∈ (M, η) decreases as √VC(Π)/n. This allows for classes Π
for which the complexity VC(Π) increases with the sample size, but at a slower rate
than n. Moreover, Kitagawa and Tetenov (2018) also provide a lower bound on the
risk, which is the left term in (9.10). Indeed, the best risk is bounded by below by a
term of the same order √VC(Π)/n as the upper bound (9.10). This shows that the
rate√VC(Π)/n is optimal within the class P ∈ (M, η).

We give some insights into the proof of Theorem 9.1. For any policy π ∈ Π:

W(π) –W(π̃) = W(π) – Ŵ(π̃) + Ŵ(π̃) –W(π̃)

≤ W(π) – Ŵ(π̃) + sup
π′∈Π

|Ŵ(π′) –W(π′)|

≤ 2sup
π′∈Π

|Ŵ(π′) –W(π′)|,

and therefore, for π = π∗,

R(π̃) ≤ 2sup
π′∈Π

|Ŵ(π′) –W(π′)|.

The term Ŵ(π′)–W(π′) can be seen as a centered empirical process, under the form:

1
√n

n
∑
i=1

( fπ′(Yi,Xi,Di) – E[ fπ′(Yi,Xi,Di)]),



Optimal policy learning 179

for functions indexed by π′ ∈ Π:

fπ′(Yi,Xi,Di) := ( YiDi

p(Xi)
– Yi(1 – Di)

1 – p(Xi)
) π′(Xi).

The result then follows from inequalities on the expectation of the supremum of
empirical processes indexed by classesΠwhose complexity, throughVC-dimension,
is bounded (Van der vaart and Wellner, 1996).
Computational aspects. As we learn the optimal policy through an argmax in

problem (9.8), it is important to also describe its computational aspects. Indeed,
since problem (9.8) is not a convex optimization problem in general, these aspects
are important. To do so, it is useful to re-parameterize the problem, noting that the
objective function (9.7) can be centered and that it is equivalent to maximize the
advantage of the policy π:

A(π) = 2W(π) – E[Y(0) + Y(1)]

= E[(2π(X) – 1)τ(X)] (where W(π) = E[Y(π(X))]). (9.11)

We then maximize the empirical advantage:

Ã(π) = 1
n

n
∑
i=1

(2π(Xi) – 1) ( YiDi

p(Xi)
– Yi(1 – Di)

1 – p(Xi)
)

= 1
n

n
∑
i=1

(2π(Xi) – 1)Γi, Γi =
YiDi

p(Xi)
– Yi(1 – Di)

1 – p(Xi)
(9.12)

= 1
n

n
∑
i=1

(2π(Xi) – 1)sign(Γi) |Γi|. (9.13)

The formulation (9.13) shows that learning policies through empirical maximiza-
tion can be seen as a weighted optimization problem in the context of classification.
We can use tools developed in weighted classification (see e.g., Athey and Wager,
2021; Zhou et al., 2018; Kitagawa et al., 2021) to solve this problem. In some spe-
cial cases of policy classes, the problem can be exactly solved using a reformulation
as a mixed integer programming problem. This is the case for linear classes Π (see
Appendix C in Kitagawa and Tetenov, 2018) or finite depth decision trees (see Zhou
et al., 2018). However, the computational complexity increases with the sample size,
which limits the use of this exact approach. There are also algorithms that provide
approximate solutions (for classes Π of finite depth decision trees, see Zhou et al.,
2018), but are much less computationally expensive. Kitagawa and Tetenov (2018)
suggest convexifying the risk by minimizing instead:

E[ϕ(Y f(X))], where π(x) = 1{ f(x) ≥ 0}, (9.14)
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for well-chosen convex functions ϕ and certain classes of functions f. When the true
minimizer π∗ belongs to the considered class Π, then the minimization of the sub-
stitution risk (9.14), which is a (convex) problem much simpler to solve than the
original classification problem consisting in maximizing (9.11), also allows for the
minimization of the initial risk (see, e.g., Zhang, 2004; Bartlett et al., 2006). How-
ever, this assumption is not desirable in the context of optimal policy estimation.
Kitagawa and Tetenov (2018) provide conditions under which the minimization of
the substitution risk (9.14) amounts to minimizing the initial risk,without assuming
that the optimal policy belongs to class Π.

9.2.2 Maximization of empirical welfare with estimated
propensity score

In the estimator from Section 9.2.1, we have so far assumed that the propensity score
p is known. Following the same logic as in Section 8.1, we now construct a dou-
bly robust estimator that is robust to the estimation of the propensity score p, which
is a nuisance parameter in this case. In a similar spirit to the estimator proposed by
Hahn (1998) – see the augmented inverse propensity score estimator (3.9) – Athey
and Wager (2021) introduce a modification to the weights Γi in (9.12):

Ã(π) = 1
n

n
∑
i=1

(2π(Xi) – 1)Γ∗i ,

Γ∗i = μ1(Xi) – μ0(Xi) +
(Yi – μ1(Xi))Di

p(Xi)
– (Yi – μ0(Xi))(1 – Di)

1 – p(Xi)
.

These modified weights only have an impact in a finite sample, and do not change
in population of Ã, which remains A. They are introduced to make the moments
defining A locally robust (or Neyman orthogonal) to the estimation of the nuisance
parameters, which are μ0, μ1, and the propensity score p. The weights Γ∗i are still ora-
cle weights since the functions μj and p are assumed to be known. As in Section 8.1,
Athey andWager (2021) then use cross-fitting, introduced in Section 5.3, to propose
an estimable estimator:

Â(π) = 1
n

n
∑
i=1

(2π(Xi) – 1)Γ̂i

Γ̂i = μ̂k(i)1 (Xi) – μ̂k(i)0 (Xi) +
(Yi – μ̂k(i)1 (Xi))Di

p̂k(i)(Xi)
– (Yi – μ̂k(i)0 (Xi))(1 – Di)

1 – p̂k(i)(Xi)
, (9.15)

where k(i) indicates the index of the subgroup of the partition (Ik)k = 1,…,K of the
indices of the sample {1,…, n} in which the individual i is located, and
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π̂ = argmax
π∈Π

Â(π). (9.16)

We assume, as in Section 8.1, that the functions μj, j = 1, 2 and p are sufficiently
well estimated according to the following criteria:

1. uniform consistency of the estimators

sup
x∈

||μ̂j(x) – μj(x)|| , sup
x∈

||p̂(x) – p(x)||
p⟶ 0;

2. convergence rate in L2 norm

max (E [(μ̂j(X) – μj(X))2] ,E [(p̂(X) – p(X))2]) = oP(n–1/2).

This allows for a large number of machine learningmethods under various assump-
tions of classical regularities in nonparametric estimation (see Zhou et al., 2018,
for more references and different examples of rates for classes of functions, such as
parametric functions, Holder or Sobolev classes, and Reproducing Kernel Hilbert
Space – RKHS). To adapt the methods from Section 8.1, the goal is to ensure that
the estimator with estimated nuisance parameters Â is close to the one where these
parameters are known Ã, for a fixed policy π ∈ Π:

√n(Â(π) – Ã(π))
p⟶ 0.

However, to be able to reduce it to the case where the propensity score is known,
and since the estimator maximizes the empirical risk over π ∈ Π, a stronger result
is needed, valid uniformly over the set of policies π ∈ Π. Athey and Wager (2021)
obtain the following key result (Lemma 4), which guarantees that if VC(Π) ≤ n1/2,
then

√n sup
π∈Π

|Â(π) – A∗(π)|
p⟶ 0.

Theorem 1 fromAthey andWager (2021) then provides an upper bound of the form
(9.10) in Theorem 9.1, with the functions μ0, μ1, and p being estimated.

9.3 Application: optimizationof a trainingprogram

We continue the study of the randomized experiment developed in Section 8.3.9 and
in Kitagawa and Tetenov (2018) andMbakop and Tabord-Meehan (2021).We rean-
alyze here the data from the Job Training Partnership Act (JTPA), which is a large
training program funded by theUS federal government, with the aimof determining
an optimal training policy based, for simplicity, solely on past wages and education.
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Two-thirds of individuals are randomly assigned to the JTPA treatment group and
the control group, with the treatment consisting of offering training. We focus here
on the intention-to-treat, and on the effect on individual earnings at 30 months.
Despite the fact that the propensity score is known, we use the approach (9.15)–
(9.16) of Athey and Wager (2021), where the treatment effect τ and the propensity
score are estimated using random forests (causal ones for τ). The optimal policy is
then estimated via (9.16) using decision trees of fixed depth (1, 2, and 3 presented
in Figure 9.1). The advantage is estimated using sample splitting with K = 10, via

ÂCV = 1
n

K
∑
k=1

∑
i∈k

(2π̂(–k)(Xi) – 1)Γ̂i,

on the different sample splits k, and the gain reported in Table 9.1 in the same
manner.

Figure 9.2 shows the treatment policies obtained byminimizing the empirical risk,
while restricting to the class of decision trees of fixed depth and without restriction.
In the case of the class of decision trees of depth 1, we obtain the same policy as
the class of quadrant policies presented in Figure 1 of Kitagawa and Tetenov (2018).
It can be observed from Table 9.1 that this relatively simple policy already brings
a gain compared to the uniform policy where the entire population is treated. The
gain increases gradually with the complexity of the class of trees considered. The
“optimal” gain without restrictions is large compared to the uniform policy, but it
can be noted from Figure 9.2 that the latter gives a relatively complex allocation
plan with respect to the two relevant variables here, which are education and pre-
vious wage. This analysis quantifies what would be lost by using the very simple
allocation rule based on decision trees of depth 1 rather than an optimal but com-
plex rule to implement. The decrease in gains with tree depth for these relatively
low depths that are fixed in advance suggests that these classes are not particularly
well suited to the problem, and that linear or polynomial classes in education as
in Kitagawa and Tetenov (2018) would be better choices. It should be noted that
Kitagawa and Tetenov (2018) also illustrates how the obtained policies are modified
when treatment costs are taken into account.

≥ 15 years of education?

yes, treated no, not treated

Previous wage ≥ 4,186k$?

Previous wage ≥ 3115k$?

yes, treated no, not treated

≥ 15 years of education?

yes, treated no, not treated

Figure 9.1 Example of decision trees of fixed depths 1 (left) and 2 (right) obtained by
maximizing the empirical welfare.
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Table 9.1 Estimated gains according to the chosen policy using years of education and annual
wage before entering the program.

Known propensity score Estimated propensity score
Estimated average
gain ($)

Treated
population (%)

Estimated average
gain ($)

Treated
population (%)

All treated 1,179.99 100 1,254.22 100
(333.16) (327.50)

Depth 1 tree 1,260.71 96 1,343.78 96
(322.30) (316.63)

Depth 2 tree 1,352.88 87 1,436.73 86
(304.53) (298.20)

Depth 3 tree 1,584.59 88 1,620.49 88
(304.24) (299.65)

Optimal 2,131.32 77 2,166.80 77
(278.10) (273.92)

Note: We adopt the same convention as Kitagawa and Tetenov (2018), and the reported gains are the differences
from the average income in the 30 months following the training. Unlike Kitagawa and Tetenov (2018), we use
AIPW for estimation but like them IPW for gain calculation.

9.4 Summary

Key concepts

Optimal policy learning, minimax regret criterion, maximization of empirical welfare, com-
plexity of a class of sets, VC-dimension.

Codeanddata

The code policy_learning_jtpa.R associated with the application in Section 9.3 is
available on the GitHub. The data and code to replicate the application by Mbakop and
Tabord-Meehan (2021) can be downloaded from onlinelibrary.wiley.com/doi/abs/10.3982/
ECTA16437.

Questions

1. ShowProposition 9.1.
2. What is the objective introduced for learning the optimal policy? Give the advantages

and disadvantages of considering worst-case as a measure.

Continued

http://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA16437
http://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA16437


184 Machine Learning for Econometrics

30000

20000

Pr
e-

pr
og

ra
m

 A
nn

ua
l E

ar
ni

ng
s

10000

0
9 12

Years of Education
15 18

30000

20000

10000

0

Pr
e-

pr
og

ra
m

 A
nn

ua
l E

ar
ni

ng
s

9 12

Years of Education

15 18

9 12
Years of Education

15 18

30000

20000

10000

0

Pr
e-

pr
og

ra
m

 A
nn

ua
l E

ar
ni

ng
s

Treated Group

Treated Group

Untreated Group+

Treated Group
Untreated Group+

Treated Group
Untreated Group+

Figure 9.2 Treatment decisions obtained bymaximizing empirical risk and non-parametric
plug-in of the estimated treatment effect.
Note: Each point represents a sample of 1,000 randomly drawn observations from the 11,008 observations.
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3. For what statistical and operational reasons is it desirable to limit the complexity of
the class of policies considered?

4. What measure is used for the complexity of the class of policies considered? Can it
grow with the number of observations, and if so, how?

5. Give three examples of classes of policies that can be considered and discuss the
ranking of their complexities.

6. What is the computational gain in rewriting the maximization of empirical risk in the
form of the maximization of the advantage:

Ã(π) = 1
n

n
∑
i=1

(2π(Xi) – 1) sign(Γi)‖Γi‖?

Additional references

We recommend reading the foundational articles by Manski (2004), Stoye (2009), and Kita-
gawa and Tetenov (2018). In particular, we suggest reading the treatment of the application
in Section 9.3 by Kitagawa and Tetenov (2018): they consider different classes than those
considered here and also illustrate how the obtained policies are modified when taking into
account the cost of treatment. Finally, the literature on the subject is flourishing and now
addresses more realistic and complex contexts than the one developed here, see Viviano
and Bradic (2020); Athey and Wager (2021); Viviano, (2019).
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Chapter 10
The synthetic controlmethod

The synthetic control method has been considered by Athey and Imbens (2017)
as “arguably the most important innovation in the policy evaluation literature in
the last fifteen years.” Introduced in particular by Abadie and Gardeazabal (2003)
and Abadie et al. (2010), its popularity in empirical studies is constantly growing,
as evidenced by applications in various fields such as taxation and football player
migration (Kleven et al., 2013), immigration (Bohn et al., 2014), health policies
(Hackmann et al., 2015), minimum wage (Allegretto et al., 2017), regional poli-
cies (Gobillon and Magnac, 2016), sex work laws (Cunningham and Shah, 2017),
financial value of connections to policymakers (Acemoglu et al., 2016), the effect of
COVID-19 certification on health outcomes (Oliu-Barton et al., 2022), and many
more.

Often considered as an alternative to difference-in-differences methods especially
in situations where only aggregated data is available (Angrist and Pischke, 2009,
Section 5.2), the synthetic control method offers a data-driven procedure for select-
ing a comparison unit, called the “synthetic unit” in comparative case studies. The
synthetic unit is constructed as a weighted combination of control units, also known
as the “donor pool.” It aims to best replicate the behavior of the treated unit dur-
ing the pre-treatment period. This approach enhances the likelihood of satisfying
a crucial assumption for the credibility of such comparison: the common trend
assumption (CTA). The CTA posits that, in the absence of the policy change, the
treated and control groups would have followed the same trajectory. Moreover, due
to the characteristics of the synthetic control solution, certain units in the control
group may receive a weight of zero. In contrast, the difference-in-differences esti-
mator assigns a weight of 1/n0 to every control unit, where n0 represents the size
of the control group. These nuances will be discussed in detail in the core of the
chapter. However, these insights provide a preliminary understanding of the flexi-
bility offered by the synthetic control method. It allows for the individual weighing
of control units to obtain the best possible counterfactual – an estimate of the out-
come variable in the absence of treatment – in the sense that it replicates the treated
unit during the pre-treatment period.

Although the link with the difference-in-differences approach is direct, the syn-
thetic control method is also related to matching estimators (Abadie and Cattaneo,
2018, Section 4, for a brief introduction) because solving the synthetic control pro-
gram is equivalent to performing matching by minimizing a certain distance. To
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learn more about this topic, the reader can refer to Section 10.6 as well as Abadie
and L’Hour (2021). Apart from these technical considerations, the effectiveness of
this method can be attributed to its simplicity and visual nature, as demonstrated
later on. It also offers a quantitative tool for comparative case studies, a type of task
traditionally more qualitative in nature.

Section 10.1 introduces the method, while Section 10.2 presents a result on the
bias of the estimator that colors the intuition behind the method. Section 10.3 is
more methodological in nature and explores the use cases of the synthetic control
method as well as the potential pitfalls. Section 10.4 presents how to perform tests
and construct confidence intervals. The seminal article by Abadie et al. (2010) is
reproduced in Section 10.5. Finally, Section 10.6 discusses the extension to cases
where multiple units are treated.

10.1 Framework andestimation

To present the synthetic control method, consider a panel data framework. We
observe n0 + 1 units at each date t = 1, . . . ,T. Unit 1 is treated starting from date
T0 + 1, while units 2 to n0 + 1 are never treated. Units 2 to n0 + 1 form what is called
the “donor pool” because these units can be selected or not to be a part of the syn-
thetic unit. Yi,t(0) represent the potential outcome of unit i at date t if it is not treated,
and Yi,t(1) the potential outcome if it is treated. We observe the treatment exposure
of each unit at each date (Di,t) and the realized outcome Yi,t obs defined by:

Y obs
i,t = Yi,t(Di,t) = { Yi,t(0) if Di,t = 0

Yi,t(1) if Di,t = 1

The parameter of interest is the effect of the intervention on unit 1 during the post-
treatment period, i.e., between dates T0 + 1 and T:

τt := Y1,t(1) – Y1,t(0), t = T0 + 1, . . . ,T

Remark 10.1 About thedimensions

Mostempirical articles thatuse thesynthetic controlmethoddealwith longpaneldatawhere
T is relatively large or proportional to n0, and where there are at most a dozen treated units.
For example, in Abadie et al. (2010), T = 40, n0 = 38 for a single treated unit; in Acemoglu
et al. (2016), T ≈ 300, n0 = 513 for about 10 treated units. This contrasts strongly with tra-
ditional applications that make use of standard panel data or repeated cross-sectional data
where n0 is very large while T varies from two to 10 dates. In most applications where the
method is used, a “unit” is a city, a region, or even a country, hence the limited sample size.
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T0 is necessarily greater than 1 but is generally located after the middle of the period, i.e.,
T0 > (T – 1)/2, in order to have a long pre-treatment period that allows the synthetic unit
to be “learned” inmachine learning parlance (see Theorem 10.1 for a justification). As a con-
sequence, the standard asymptotic frameworkwhere the number of units tends to infinity is
less relevant for this type of applications.

Matrix notations give a better illustration of the nature of the problem, by recasting
it as a missing variable problem. We observe the following matrix:

Y obs := (Y obs
i,t ) t=T,…,1

i=1,…,n0+1
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Y1,T(1) Y2,T(0) ⋯ Yn0+1,T(0)
⋮ ⋮ ⋮

Y1,T0+1(1) Y2,T0+1(0) ⋯ Yn0+1,T0+1(0)
Y1,T0 (0) Y2,T0 (0) ⋯ Yn0+1,T0 (0)
⋮ ⋮ ⋮

Y1,1(0) Y2,1(0) ⋯ Yn0+1,1(0)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

However, thematrix of outcomes in the absence of treatment has the following form:

Y(0) :=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

? Y2,T(0) ⋯ YN+1,T(0)
⋮ ⋮ ⋮
? Y2,T0+1(0) ⋯ Yn0+1,T0+1(0)

Y1,T0 (0) Y2,T0 (0) ⋯ Yn0+1,T0 (0)
⋮ ⋮ ⋮

Y1,1(0) Y2,1(0) ⋯ Yn0+1,1(0)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, we encounter a missing variable problem, also called the “fundamental prob-
lem of causal inference” (Holland, 1986). The synthetic control method aims to
estimate the T – T0 – 1 missing elements on the first column by reweighting the
n0 observed elements at the end of each row to produce a counterfactual:

Y(0) =

? Y2,T(0) ⋯ Y +1,T (0)
⋮ ⋮ ⋮

? Y2,T0+1(0) ⋯ Y

n0

+1,T0+1(0)
Y1,T0 (0) Y2,T0 (0) ⋯ Yn0+1,T0 (0)
⋮ ⋮ ⋮

Y1,1(0) Y2,1(0) ⋯ Yn0+1,1(0)

n0 .

Once this basic intuition is established, weights need to be calculated to apply to
each unit i = 2, . . . , n0 + 1. For i = 1, . . . , n0 + 1, we define Xi as the p-dimensional
vectormeasuring the pre-intervention characteristics of unit i. Inmany applications,
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the p pre-intervention characteristics will only include pre-treatment outcomes (in
this case p=T0), but we may want to add other predictors of the observed outcome
during the pre-treatment period, which may or may not be time-varying. We gather
them in a vector Zi such that for the treated unit:

Xi
(p×1)

:=

⎛
⎜
⎜
⎜
⎜
⎝

Y obs
i,1
Y obs
i,2
⋮

Y obs
i,T0

Zi

⎞
⎟
⎟
⎟
⎟
⎠

.

We define Xc to be a p × n0 matrix obtained by concatenating [X2, . . . , Xn0+1]. For a
diagonal p × p matrix V, we define the norm ‖X‖V = √X′VX. Let ω = (ω2, . . . ,ωn0+1)
be vector of parameters of size n0 subject to the following constraints:

ωi ≥ 0, for i = 2, . . . , n0 + 1 , (10.1)

∑
i≥2

ωi = 1. (10.2)

These constraints prevent extrapolation beyond the support of the data, i.e., the
counterfactual cannot take a value greater than the maximum or lower than the
minimum observed value for a control unit. The solution to the synthetic control
problem ω∗ is obtained by solving the following program:

min
ω
‖X1 – Xcω‖2V, (10.3)

subject to the constraints (10.1) and (10.2). In other words, the synthetic unit is the
projection of the treated unit onto the convex hull defined by the control units.

The synthetic control estimator is defined as the difference between the observed
outcome for the treated unit and the synthetic outcome:

τ̂t := Y obs
1,t –

n0+1
∑
i=2

ω∗
i Y obs

i,t .

We note that the difference-in-differences estimator would be:

τ̂ DIDt := Y obs
1,t – (Y obs

1,T0 + 1
n0

n0+1
∑
i=2

Y obs
i,t – Y obs

i,T0) ,

by equally weighting each member of the donor pool and taking as counterfac-
tual the observed outcome measure during the last period for the treated unit,
adjusted for the average variation of the observed outcome variable in the control
group.
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Remark 10.2 About the choice ofXi

X1 and Xc must contain pre-treatment variables that are good predictors of the variable of
interest. In the example of theMariel boatlift (Card, 1990), where the variables of interest are
wages and unemployment, these include aggregated demographic indicators (gender, eth-
nicity, age), education levels, median income, and GDP per capita. Due to the chronological
nature of the problem, including pre-treatment outcomes is strongly advised by Theorem
10.1. e.g., including unemployment rates from 1975–1979 provides a way to create a con-
trol unit that verifies the CTA. It is noted that the validity of the synthetic control method
relies implicitly on an assumption of conditional independence with observable factors of
the form E [Yi,t(0)|Xi,Di] = E [Yi,t(0)|Xi]. As long as the synthetic unit is sufficiently sim-
ilar to the treated unit in terms of the selected variables, it is believed to form a credible
counterfactual.

Remark 10.3 About the choice ofV

Thematrix V in the objective function is a diagonal matrix whose each element (positive) on
the diagonal reflects the researcherʼs prior beliefs on the importance of each variable for the
studied intervention. Let vj be the j-th element of the diagonal. In this case, the synthetic
control program (10.3) can be written as:

argmin
ω

p

∑
j=1

vj [X1,j –
n0+1

∑
i=2

ωiXc,ij]
2

.

Since ω∗ depends on V, we use the notation ω∗(V). However, the applied econometrician
does not always have a preconceived idea about the weighting matrix V to adopt. Abadie
et al. (2010) then propose to choose v1, . . . , vp by using nested minimization of the mean-
squared prediction error (MSPE) on the period preceding the treatment:

MSPE(V) :=
T0
∑
t=1
[Y obs

1,t –
n0+1

∑
i=2

ω∗
i (V)Y obs

i,t ]
2

.

A form of cross-validation can also be used (Abadie and L̓ Hour, 2021). For simplicity of
exposition and because it is the most natural choice, we assume that the validation period
is within the second half of the pre-intervention period, although other choices are
possible. The procedure is as follows:

1. We partition the pre-intervention period containing T0 dates into T0 – k initial
learning dates and k subsequent validation dates.

Continued
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Remark 10.3 Continued

2. For each validation period, t ∈ {T0 – k, . . . ,T0}, we calculate

τ̂t(V) = Y obs
1,t –

n0+1

∑
i=2

ω∗
i (V)Y obs

i,t ,

whereω∗
i (V) solves (10.3) with Xmeasured in the learning period {1, . . . ,T0 – k – 1}.

3. We choose V to minimize the mean squared prediction error in the validation period,

MSPE(V) = 1
k

T0
∑

t=T0–k
τ̂t(V)2.

The intuition behind this strategy is based on the nullity of the estimated treatment effect
during the validation period.

10.2 A result on thebias

Why does synthetic control work? This section details the result given by Abadie
et al. (2010) on the bias of the estimator. We assume the data generating process for
the outcome variable in the absence of treatment is given by a factor model similar
to the model (2.21) studied in Chapter 11:

Yi,t(0) = δt + Z′iθt + λ′tμi + εi,t, (10.4)

where δt is a time-fixed effect, θt is a time-varying parameter vector, Zi are observed
covariates, λt are unobserved common factors of dimension F, μi are unobserved
loading factors (dimension F), and εi,t are unobserved transitory shocks. For read-
ers unfamiliar with factor models, the vector λt can be considered as the underlying
macroeconomic dynamics that affect each unit differently through μi. Instead of tak-
ing this into account using multiple observed macroeconomic variables, one may
want to capture them with a small number of factors, similar to what is done in
principal component analysis. In essence, synthetic control works because it offers
a simple method to approximate the factor dynamics λ′tμi.

Assumption 10.1 (i.i.d. transitory shocks). (εi,t)i=1,…,n0+1,t=1,…,T are i.i.d. random vari-
ables in both i and t, with mean zero and variance σ2. Moreover, for an integer
m > 2, E|εi,t|m < ∞.

Assumption 10.2 (Perfect synthetic matching). The matching distance is zero:

‖X1 – Xcω∗‖2V = 0.
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In other words, the synthetic unit perfectly replicates the treated unit during the
pre-treatment period.

This is a crucial point in proving the following theorem. Note that this is a fre-
quent situation in many applications due to some overfitting when n0 > p since
there are more parameters than variables to fit. However, as p increases, this
assumption is less likely to be verified because the probability for the treated
unit to be included in the convex hull formed by the untreated units tends
to zero exponentially (a problem known as the “curse of dimensionality”). A
detailed discussion is given in Ferman and Pinto (2016). Let ξ(M) be the smallest
eigenvalue of:

1
M

T0

∑
t=T0–M+1

λtλ′t .

Let λP be the T0 × F matrix whose t-th row is equal to λ′t . We make the following
assumption:

Assumption 10.3 (Invertibility of the factor matrix). ξ(M) ≥ cξ > 0 for every positive
integer M ≥ F. Consequently, λP′λP is invertible. Also, suppose that |λt|∞ ≤ λ̄, for
1 ≤ t ≤ T.

Theorem 10.1 (Bias of the synthetic control) Under Assumptions 10.1, 10.2, and 10.3,
for t ∈ {T0 + 1,…,T}:

Eτ̂t – τt →
T0→+∞

0.

The proof of this result, which is interesting in itself, is provided in the appendix
of this chapter. Embedded in the proof, you can notice that using pre-treatment
outcomes as variables to compute the synthetic control weights is important because
they allow to approximate the factor part of the counterfactual outcome equation,
λ′tμi.

Remark 10.4

This result, due to Abadie et al. (2010), shows that the bias of the synthetic control estima-
tor tends to zero as the number of pre-treatment dates increases. For example, it does not
addressℓ1 orℓ2 convergence,mainlybecause in theappendixproof E(|R3,t|) = E(|ε1,t–ε2,t|)
does not decrease as T0 increases. Indeed, we only observe a single treated unit, hence the
existence of a variance term that does not disappear.
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10.3 Whenandwhy should synthetic controls beused

When is it a good idea to use synthetic control? Abadie (2021) provides some guide-
lines to frame the use of this method. We start with three general conditions, which
are not strictly specific to synthetic control. Then, we discuss conditions that apply
more specifically to comparative studies of amacroeconomic nature and to synthetic
control.

First, there should be no anticipation of the policy by the agents. In practice, the
effect of the policy may occur before its formal implementation if forward-looking
agents react in anticipation, as soon as it is announced. To remedy this problem,
it is possible to backdate the intervention to the date of its announcement, rather
than to the date of its application. Second, it is necessary to ensure the absence of
spillover effects. Indeed, if the spillover effects of a policy are significant and affect
geographically neighboring units, selecting these neighbors to be part of the donor
pool can also lead to biasing the results by underestimating the actual effect of the
policy. It may therefore be preferable to eliminate units that may have been affected
by the policy, or to consider them as treated themselves. Third, theremust be enough
post-intervention dates to detect an effect that may take time to surface.

Fourth, the treatment effect must be sufficiently large to be distinguished from the
volatility present in the variable of interest. In other words, configurations in which
synthetic control has a good chance of detecting an effect are those for which the
signal-to-noise ratio is relatively high a priori. Unlike more conventional microe-
conometric configurations where uncertainty can be reduced through averaging
over a large number of individuals, the framework of synthetic control, where we
only have a small number of treated units, limits this possibility. It can therefore
only be used to evaluate effects that are suspected to have a significant economic
impact. Note also that too much volatility in the variable of interest increases the
risk of overfitting. Indeed, in the factor model (10.4), if the variance of the transi-
tory shocks is relatively large compared to the unobserved term that we are trying
to approximate (λ′tμi), and given that the number of pre-treatment dates T0 is not
always sufficiently large, the synthetic unit may result from fitting the noise (εi,t)
rather than the factor component. In cases where this volatility is too high, it may
be wise to pre-filter the time series via a moving average.

Fifth, the donor pool must be composed only of units that are homogeneous in
terms of treatment or non-treatment. In other words, we want to ensure that no unit
that can be included in the construction of the synthetic unit has undergone a treat-
ment or policy aimed at acting on the same outcome variable, as this could bias the
results. Thus, in the example of the tobacco control program that we will study later,
we do not want to take into account certain US states that have also changed their
anti-tobacco legislation during the period under consideration. Furthermore, these
units must also be sufficiently similar to the treated units in terms of characteristics
to justify a comparison. Thus, it is not always possible to apply the synthetic control
method, especially when a valid donor pool is unavailable. This condition can be
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verified via a convex hull condition: the synthetic unit is a convex combination of
units from the donor pool. Therefore, the counterfactual is within the convex enve-
lope defined by the donor pool. Once constructed, the researcher must verify that
the characteristics of the synthetic unit are sufficiently close to those of the treated
unit. In some cases, the treated unit is so particular that it is impossible to construct
a credible counterfactual, as indicated by the significant distance between it and the
synthetic unit during the pre-treatment period.

When these conditions are met, the synthetic control method offers certain
advantages. The first one is the absence of extrapolation: the counterfactual can-
not take a value higher than the maximum or lower than the minimum observed
in the donor pool at each date. The synthetic control estimator prevents extrapola-
tion because the weights are positive and their sum is equal to one. The second one
is the transparency of the adjustment. Echoing the convex hull condition from the
previous paragraph, when ‖X1 – Xcω∗‖2V > 0, it means that X1 is not in the convex
hull defined from the untreated units, and thus X1 cannot be perfectly replicated. On
the contrary, the use of linear regression always allows for a perfect reproduction of
the treated unit, but this can lead to spurious results (Abadie et al., 2015). Thirdly, it
provides protection against specification searching. Indeed, only the characteristics
measured during the period preceding the treatment are necessary to calculate the
weights. They can therefore be calculated before the treatment takes place in order to
avoid engaging in p-hacking. Finally, the sparsity of the solution facilitates the qual-
itative interpretation of the counterfactual, opening up possibilities for discussions
among experts without a quantitative background.

10.4 Inferenceusingpermutation tests

Note that when defining the quantity of interest, τt, we did not use an expectation,
like in Abadie et al. (2010). This is because the synthetic control method is devel-
oped within a framework where we observe not a random sample of individuals
from a super-population, but aggregated data. Therefore, the uncertainty does not
come from sampling (or at least, it is negligible), but from the assignment of treat-
ment to well-defined units. An example illustrating this point is Card (1990), which
uses the Mariel boatlift as a natural experiment to measure the effect of a sudden
and substantial flow of migrants on the wages and employment of less skilled native
workers in theMiami labormarket. Between April andOctober 1980, about 125,000
Cubans fled Fidel Castro and sought asylum in Florida, which suddenly increased
Miami’s workforce by 7%. Card uses individual-level data from the Current Pop-
ulation Survey (CPS) for Miami and four comparison cities (Atlanta, Los Angeles,
Houston, and Tampa-St. Petersburg) to conduct a difference-in-differences analysis.
Table 10.1 presents an abbreviated version of a table from the article:

Official statistics can provide us with unemployment rate number at the city level
with lower standard errors. Anecdotally, the standard deviation for the estimation
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Table 10.1 Difference-in-differences estimator for the unemployment rate

Year
1979 1981 1981–1979

Miami 8.3 (1.7) 9.6 (1.8) 1.3 (2.5)
Comparison cities 10.3 (0.8) 12.6 (0.9) 2.3 (1.2)
Miami–Comparison cities –2.0 (1.9) –3.0 (2.0) –1.0 (2.8)

Note: Based on Table 4 in Card (1990). African American workers. Standard errors in
parentheses.

of the French unemployment rate is close to 0.2. The moral of the story is that if the
aggregated data we are dealing with is expressed per capita, Y obs

i,t is probably already
an average over a sufficiently large sample to apply the law of large numbers. For
example, Y obs

i,t = Ūi,t ≈ E(Uk,it) where Uk,it is a Bernoulli variable equal to one when
individual k is unemployed at time t in city i. For more information on this topic,
see e.g., Abadie et al. (2020). This observation justifies the use of a different type of
inference in the synthetic control methodology.

10.4.1 Permutation tests in a simple framework

In this section, we temporarily move away from the synthetic control framework to
a cross-sectional data framework, in order to introduce what are called exact Fisher
p-values that are used to conduct permutation tests (see also Chapter 5 in Imbens
and Rubin, 2015). We consider a simple framework of a randomized experiment at
a single date where we observe an i.i.d. sequence (Di, Yobs

i )i=1,...,n with:

Y obs
i = Yi(Di) = { Yi(0) if Di = 0

Yi(1) if Di = 1

(Yi(0), Yi(1)) ⊥⊥ Di. The missing outcome is denoted by Ymis
i := Yi(1 – Di). Fisher’s

idea is to test the null hypothesis of a constant treatment effect for everyone. The
null hypothesis can be written for a constant C as:

H0(C) : “Yi(1) = Yi(0) + C, i = 1, . . . , n.”

This hypothesis should not be confused with a constant treatment effect on average,
n–1∑n

i=1 Yi(1)–Yi(0) = C. It seemsmuch stronger and logically implies a hypothesis
about a constant average treatment effect. However, the paradox discussed in Ding
(2017) shows that when the null hypothesis does not hold, there are cases where
the Neymanian hypothesis of no average treatment effect is rejected while Fisher’s
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strong null hypothesis is not, which contradicts the logical link between the two
hypotheses. This surprising result can be explained by the lack of power of Fisher
tests.

Under H0(C) it is possible to recover the outcome variable in the regime where
the unit is not observed, simply by imputing the constant treatment effect: Ymis

i =
Y obs
i – (2Di – 1)C. In other words, underH0(C), we can solve the problem of missing

variable through imputation. In the case where C = 0, this means that treatment
assignment should not matter since the potential outcomes under both treatment
regimes are the same. We construct an estimator of the treatment effect τ̂(D),
which in practice depends on both the treatment assignment D= (D1, . . . ,Dn) and
the observed outcomes Y= (Y1, . . . , Yn), but we only specify the dependence on the
assignment for simplification. For example, τ̂(D) could be the difference inmeans of
the outcome variable between treated and untreated units. Recall that a permutation
π is a bijective function π : {1, . . . , n} → {1, . . . , n}. Thanks to H0(C), we can com-
pute any treatment effect statistic τ̂(Dπ) for the allocation Dπ := (Dπ(1), . . . ,Dπ(n))
for any permutation π ∈ Π, the set of all permutations of the first n integers onto
themselves. We denote by Dobs := (D1, . . . ,Dn) the vector of observed assignments.
The Fisher p-value is defined as follows:

p(C) := 1
|Π| ∑

π∈Π
1 {̂τ(Dπ) ≥ τ̂(Dobs)} .

In practice, since Π can be very large, the distribution is approximated by Monte
Carlo, using the following procedure:

1. For b = 1, . . . ,B, a new permutation of the treatment assignment Db is drawn,
and the statistic τ̂(Db) is computed using H0(C).

2. The Fisher p-value is approximated using:

p̂(C) := 1
B + 1 (1 +

B
∑
b=1

1 {̂τ(Db) ≥ τ̂(Dobs)}) .

3. The null hypothesisH0(C) is rejected if p̂(C) is smaller than a predetermined
threshold: the observed treatment allocation gives an effect that is unusually
large compared to the randomized distribution. For α ∈ (0, 1), the test is:

φα = 1 {p̂(C) ≤ α} . (10.5)

Lemma 10.1 (Test level). Suppose that Dobs = (D1, . . . ,Dn) is exchangeable with
respect toΠ under H0(C). Then, for α ∈]0, 1[, the test (10.5) is of level α, i.e., under
H0(C):

P [p(C) ≤ α] ≤ α.
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A vector of random variables (X1,X2) is said to be exchangeable if the distribution
of (X1,X2) is the same as that of (X2,X1). A sufficient condition Dobs = (D1, . . . ,Dn)
to be exchangeable with respect to Π is ifD1, . . . ,Dn are i.i.d. random variables. The
proof of Lemma 10.1, in the appendix of this chapter, is inspired by Chernozhukov
et al. (2021).

Let’s illustrate this intuition with a simulation exercise. Let P(D = 1) = .2 and let’s
draw a single sample of size n = 200 from Y|D ~  (τ0D, 1) for τ0 ∈ {0; 0.75}. We
take the absolute difference between the estimator of the average treatment effect
and C as the estimator:

τ̂ =
||||
1
n1

∑
i:Di=1

Y obs
i – 1

n – n1
∑
i:Di=0

Y obs
i – C

||||
,

which is recomputed under a large number of random permutations π of D (while
not permuting Y).

Figure 10.1 represents the distribution of the previous estimator calculated from
random permutations of the treatment allocation under the hypothesis of no effect
(C = 0). The value of the estimator for the first allocation is represented by the
dashed line. H0(0) is false in the left panel (τ0 = 0.75), and true in the right panel
(τ0 = 0). In the first case, the observed statistic is in the tail of the distribution of
estimations calculated under a random permutation. In this sense, the observed
effect is abnormally large: the estimated effect is significant. In the second case, the
observed effect is in the center of the distribution, which makes it non-significant.
The p-values indicated under the graph quantify the conclusion associated with the
Fisher tests.
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Figure 10.1 A simple Fisher test:H0 : C = 0 false vs. H0 : C = 0 true.
Note: histograms constructed from the recomputed estimator of random permutations of the treatment
allocation. The dashed vertical line is the value of the estimator under the initial allocation. On the left,
p̂ = 0.006 (̂τ = 0.671), on the right p̂ = 0.271 (̂τ = –0.23) for the null
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10.4.2 The confidence interval-test duality

From the tests presented in the previous section, we can construct confidence inter-
vals by exploiting the duality between these two concepts. Most often, this duality
is intuitively used to conclude the significance of an estimation through its confi-
dence interval – i.e., does it contain the value zero? Here, we use it in the opposite
direction. The intuition for constructing a confidence interval of level 1 – α is as
follows: perform the hypothesis test H0(C) at level α ∈ (0, 1) and include in the
confidence interval any value of C for which H0(C) is not rejected. More formally,
the confidence interval will be defined as follows:

CI1–α = {C ∈ R | p̂(C) > α}.

We denote τ0 as the true value of the treatment effect, we can calculate the probability
that the interval obtained in this way indeed contains τ0:

P[CI1–α ∋ τ0] = P[p̂(τ0) > α] = 1 – P[p̂(τ0) ≤ α] ≥ 1 – α,

using Lemma 10.1. Thus, CI1–α is indeed of level 1 – α.
Figure 10.2 plots the p-value as a function of C in the null hypothesis tested for

the two cases τ0 ∈ {0, 0.75}. In the first case, τ0 = 0.75, the 95% confidence interval
is approximately [0.3, 1]. In the second case, τ0 = 0, the 95% confidence interval is
approximately [–0.6, 0.25]. We note that unlike asymptotic confidence intervals or
intervals based on the normal distribution, these intervals are not symmetric around
the estimated value. In practice, as we will see in the application presented below,
for computational efficiency reasons, we may not necessarily plot the entire curve
C → p̂(C), but rather numerically search for the solutions C∗ of p̂(C) = α.
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Figure 10.2 p-value as a function of the value C in the null hypothesis
Note: The solid line illustrates the first case τ = 0.75, the dotted line the second case τ = 0. The horizontal line
has the equation y = 0.05.
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10.5 Empirical application: tobacco control program

This section serves both as an illustration of the previously discussed concepts, as
well as to detail the implementation of certain inference procedures.

In January 1989, the state of California enacted the “Proposition 99,” one of the
first large-scale tobacco control programs, which increased the cigarette tax by 25
cents per pack, allocated tax revenues to anti-smoking budgets, funded prevention
campaigns, etc. What has been its effect on per capita tobacco consumption? This
is the emblematic example used to illustrate the synthetic control method, where
the goal is to create a synthetic California state by reweighting the states that did
not modify their tobacco legislation. Xi measures the retail price of cigarettes, the
logarithm of per capita income, the percentage of the population aged 15 to 24, beer
consumption per capita (averages from 1980 to 1988), cigarette consumption from
1970 to 1974, 1980, and 1988. Further details of this application can be found in
Abadie et al. (2010). Most of the tables and figures in this section are reproduced
from the raw data of this article.

Figure 10.3 represents cigarette consumption in California and in 38 other states
that did not modify their tobacco legislation. It is very clear that no common trend
is observed.

Figure 10.4 compares the same data for California and its synthetic counterpart
that did not implement the treatment. The synthetic unit is composed of Utah
(34.3%), Nevada (23.6%), Montana (18.2%), Colorado (17.5%), and Connecticut
(6.2%). And Table 10.2 compares the characteristics of California, its synthetic unit,
and the other 38 states. The synthetic unit accurately replicates the behavior of Cal-
ifornia’s tobacco consumption before the treatment. The treatment effect is given by
the difference between the solid curve and the dotted curve. Proposition 99 led to a
decrease in consumption estimated at approximately 25 packs per capita in 2000.
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Figure 10.3 Proposition 99: California vs. rest of the United States.
Note: Based on the data from Abadie et al. (2010). The dotted line is a simple average of 38 states.
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Figure 10.4 Proposition 99: California vs. synthetic California.
Note: Based on the data from Abadie et al. (2010). The graph on the right represents the treatment effect over
time as the difference between the solid curve and the dotted curve in the left graph.

Table 10.2 Proposition 99: comparison of characteristics among California, synthetic unit, and
other 38 states.

California Average of 38 other States
Observed Synthetic

(1) (2) (3)

GDP per capita (log) 10.1 9.9 9.8
Cigarette prices 89.4 89.3 87.3
Percentage of 15-24 year-olds 0.2 0.2 0.2
Beer consumption per capita 24.3 24.1 23.7
Cigarette consumption per capita, 1988 90.1 91.4 113.8
Cigarette consumption per capita, 1980 120.2 120.2 138.1
Cigarette consumption per capita, 1975 127.1 126.9 136.9

Remark 10.5 Sparsity of the solution

In most cases, n0, the number of control units, is larger than p, the number of pre-treatment
characteristics. As a consequence of this observation and the constrained optimization
problem (10.3) s.t. (10.1) and (10.2), the obtained solution is often sparse, i.e., ‖ω∗‖0 ≪ n0:
only a small number of untreated units are used to produce the synthetic unit. This is the
case in this example since only five states have a non-zero weight. Theorem 1 from Abadie
and L̓ Hour (2021) shows that under weak regularity conditions, ‖ω∗‖0 ≤ p + 1.

We also show that a necessary condition for ω∗
i > 0 to occur is that control unit i is con-

nected to the treated unit in a specific tessellation of the data points defined by the columns
of (X1, Xc), called the Delaunay triangulation.
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To evaluate the significance of this effect, we adapt the method proposed in
Section 10.4 to the synthetic control framework, where there are multiple dates and
therefore multiple outcome variables. We want to test the hypothesis:

H0 : “Y1,t(1) = Y1,t(0), t = T0 + 1, . . . ,T”.

The inference procedure consists of randomly reassigning the treatment to one of
the 38 states and comparing it to the observed synthetic control estimator under the
initial treatment assignment (i.e., California as the only treated state). Since there
are several dates in this example, we need to define a statistic τ̂ to aggregate them.
A first possibility is to simply take the average of the squared prediction error
(or mean squared prediction error, MSPE) for all dates after the treatment. Let1 = {T0 + 1, . . . ,T}, we have:

1
|1|

∑
t∈1

τ̂2t ,

where τ̂t = Y obs
1,t – ∑n

j=2 ω∗
j Y obs

j,t . In Abadie and L’Hour (2021), we suggest using the
ratio between the average squared prediction error for post-treatment dates and the
same average calculated for pre-treatment dates 0 = {1, . . . ,T0}, in order to under-
weight the units that are less well reproduced during the pre-treatment period and
overweight the others:

1
|1|

∑
t∈1

τ̂2t/
1
|0|

∑
t∈0

τ̂2t .

To what extent are these two statistics larger when calculated for the state of Cali-
fornia, compared to these same statistics when we pretend that any other state is the
treated state? Figure 10.5 shows the histogram of these two statistics. The calcula-
tion was performed as follows: for each of the 39 states (including California), we
assign it the treatment (even if it is not California) and that the other 38 states do
not receive it (even California can be considered as untreated in this case), we cal-
culate the synthetic control weights, and then the two previous statistics. We obtain
a p-value of 0.2 in the first case, and 0.03 in the second. We observe that California
is the state for which the effect is the largest, when taking into account the quality of
the pre-treatment fit.

Now we want to calculate a confidence interval for a given level 1 – α. Let’s start
with a simple approach to illustrate the implementation of this method. We will rely
on a Fisher test of the null hypothesis for a constant treatment effect over time, of
the form:

H0(C) : “Y1,t(1) = Y1,t(0) + C, t = T0 + 1, . . . ,T ”.

The next step is to choose a test statistic that will be close to zero if H0(C) is true
and will be “large” if H0(C) is false. Let’s take the statistic of the ratio between the
average post-treatment MSPE and the average pre-treatment MSPE:
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Figure 10.5 Proposition 99: permutation tests.
Note: Based on the source data from Abadie et al. (2010). Shaded value represents California.

1
|1|

∑
t∈1

(̂τt – C)2
/

1
|0|

∑
t∈0

τ̂2t .

Intuitively, this statistic should be small under H0(C) since the treatment effect
should be equal to C, and diverge otherwise. This statistic can be computed under
the observed treatment assignment (i.e., when California receives the treatment), as
well as under any other desired configuration (i.e., by reassigning the treatment to
another state). In the latter case, sincewe are underH0(C), the following adjustments
must be made:

1. California, indexed by i = 1, sees its “placebo” tobacco consumption vary by
C at each post-treatment date: Y obs

1,t – C for t ∈ 1 since under this hypothesis,
it is considered untreated.

2. The state that suddenly becomes treated, indexed by i = i∗, sees its “placebo”
tobacco consumption vary by C at each post-treatment date: Yi∗,t obs + C
for t ∈ 1.

Let Ŝ1,…, Ŝn0+1 be the statistics computed under each possible reassign-
ment of the treatment. The Fisher p-value for the hypothesis H0(C) is then
given by:

p̂(C) := 1
n0 + 1

n0+1
∑
i=1

1 {Ŝi ≥ Ŝ1} ,

where California is always indexed by i= 1. Finally, we want to compute the bounds
Ĉl and Ĉu of the confidence interval at level 1 –α. In other words, we are looking for
[Ĉl, Ĉu] such that for any C ∈ [Ĉl, Ĉu], p̂(C) > α, and for any C ∉ [Ĉl, Ĉu], p̂(C) ≤ α.
These bounds are computed using a dichotomy since this function does not have
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a simple analytical expression. Note that the solution is not unique because the p-
value function is a priori piece-wise constant. We illustrate the implementation of
this algorithm for computing the upper bound Ĉu:

1. We choose two initial values a and b such that p̂(a) – α > 0 and p̂(b) – α < 0.
A crude approximation can be used for this initialization.

2. We choose a convergence tolerance ϵ > 0.
3. We then repeat the following series of operations until |b – a| < ϵ:

(a) We compute m = (a + b)/2 and p̂(m).
(b) If (p̂(b) – α) × (p̂(m) – α) > 0 (b and m are on the same side of the zero of

the function x → p̂(x) – α), then we set b = m.
(c) Otherwise, we set a = m.

The method for computing Ĉl is the same. Figure 10.6 displays the 80% confidence
interval based on this calculation method (dotted curves). It can be observed that
because the policy effect takes time to spread, the treatment effect is not constant
over time, rendering this approach inappropriate. The same method can be imple-
mented by inverting the Fisher test for each date. In Figure 10.6, this interval is
plotted as dashed lines.
Testing using conformal inference. Another way to test the hypothesis

H0 : Y1,t(1) = Y1,t(0) +Ct, t=T0 = 1,…,T for a certain user-specified trajectory
(Ct)t=T0+1,…,T is to compare the distribution of (ût)t=1,…,T before and after treatment,
where ût is defined as:

ût = {
Y obs
1,t –∑n0+1

i=2 ω∗
i Y obs

i,t if t ≤ T0,
Y obs
1,t – Ct –∑n0+1

i=2 ω∗
i Y obs

i,t if t ≥ T0 + 1.
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Figure 10.6 Proposition 99: Confidence intervals.
Note: CI means confidence interval.
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Attention here, the synthetic control weights are directly computed under the null
hypothesis. Next, we compute the statistic:

S(û) = 1
√T – T0

||||

T
∑

t=T0+1
ût
||||
.

under all permutations π ∈ Π of {1, . . . ,T} and compute the p-value:

p̂ = 1
|Π| ∑π∈Π

1 {S(ûπ) ≥ S(û)} .

The validity of this approach is developed in Chernozhukov et al. (2021). It is com-
putationally attractive since the error terms are defined once and for all and do not
need to be recomputed under each permutation.

10.6 Multiple treatedunits

So far, we have only considered cases with a single treated unit where we used the
synthetic control method to create a single counterfactual. How does this method
apply to a case with multiple treated units? Two potential solutions, each with their
advantages and disadvantages, can be considered: (i) creating a synthetic unit for
each treated unit and taking the average, or (ii) creating a synthetic unit for the
average of the treated units.

Let’s consider the first solution, which comeswith a series of potential problems to
solve. In particular, considering many treated units increases the probability that at
least one of them falls within the convex hull defined by the untreated units, resulting
in the synthetic control solution (10.3) not being unique. In Abadie and L’Hour
(2021), we introduce a penalty term in (10.3) and calculate a synthetic unit for each
treated unit (indexed by i here). Thus, if there are n1 treated units, for each i =
1,…, n1, the synthetic control weights solve:

ω∗
i (λ) = argmin

ω
‖Xi – Xcω‖2V + λ

n1+n0

∑
j=n1+1

ωj
‖
‖Xi – Xj‖‖

2

V

subject to the constraints (10.1) and (10.2). λ > 0 is a tuning parameter (similar to the
Lasso penalty). λ defines the trade-off between a good reproduction of the treated
unit and the sum of the pairwise distance between the treated unit and each control
unit. λ → 0 represents the pure synthetic control case, while λ → ∞ corresponds to
the nearest neighbor pair matching case. In fine, we average the difference between
the treated units and their respective synthetic units:

τ̂t(λ) := 1
n1

n1

∑
i=1
[Y obs

i,t –
n0+n1

∑
j=n1+1

ω∗
i,j(λ)Y obs

j,t ] .
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The theory and methods for choosing λ are developed in Abadie and L’Hour
(2021). The resulting estimator also reduces the risk of having a significant inter-
polation bias by excluding units that are very different from the treated unit in the
synthetic unit.

On the other hand, Ben-Michael et al. (2021) propose a “partially pooled”
synthetic control estimator:

(ω∗
1(ν),…,ω∗

n1 (ν)) = argmin ν
2

1
n1

n1

∑
i=1
‖Xi – Xcωi‖2V

+ 1 – ν
2

1
p

p

∑
j=1
[ 1
n1

n1

∑
i=1

Xi,j – Xc,jωi]
2

,

subject to the constraints (10.1) and (10.2) for ν ∈ [0, 1]. This estima-
tor balances two objectives: accurately reproducing each treated unit indi-
vidually (the first part, similar to the standard synthetic control method)
and accurately reproducing the average of the treated units for each char-
acteristic (the second part). The authors argue that constructing a syn-
thetic unit for each treated unit separately and then taking the average
can result in suboptimal fit of the average of the treated units and can
lead to potential bias. They show that their estimator is a solution to this
problem.

10.7 Summary

Key concepts

Synthetic control method, control units, common trend assumption, sparsity, permutation
tests, Fisherʼs p-value, test inversion.

Additional references

The main articles that contributed to the development of this method are Abadie and
Gardeazabal (2003), Abadie et al. (2010), and Abadie et al. (2015). The most emblematic one
is Abadie et al. (2010), where the authors studied the effect of a large-scale anti-smoking
program inCalifornia.Weuse their data in Section 10.5. Abadie (2021) describes themethod-
ology for applying the synthetic control method. Doudchenko and Imbens (2016) establish
the link between synthetic control, difference-in-differences, regression, and matching. It
is also worth mentioning a video by Alberto Abadie on the subject: youtu.be/2jzL0DZfr_Y.
Lastly, Volume 536 of the Journal of the American Statistical Association is a special issue on
recent advances in synthetic control.

http://youtu.be/2jzL0DZfr_Y
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Codeanddata

R, STATA, and Matlab packages for using the synthetic control are available at web.stanford.
edu/jhain/synthpage.html.

Questions

1. Given the configuration of Chapter 10, is the synthetic control estimator a consistent
estimator of the treatment effect on the treated units? Explain why or why not.

2. Give three advantages of using the synthetic control method when appropriate.
Briefly explain these advantages.

3. “The synthetic control estimator does not use the complete sample of control units.”
Explain and critique.

4. How can you use tests to construct confidence intervals?
5. You use an exact Fisher test to test the hypothesis of no treatment effectH0:

“Yi(1) = Yi(0)”. The p-value you obtained is 0.02. The 0.9 confidence interval you
obtain using the samemethodology is [–0.50, 0.36]. Is this possible?

6. Consider the model: Yi = Diτ0 + X′iβ0 + εi, whereDi is a binary variable and
εi ⊥⊥ (Xi,Di). Describe a methodology based on Fisher tests to perform inference
on τ0.

10.8 Proofs andadditional results

10.8.1 Proofs of the main results

Proof of Theorem 10.1 By using the factor model specification, for any t = 1,…,T:

τ̂t =Y1,t(1) – Y1,t(0) + [Y1,t(0) –
n0+1
∑
i=2

ω∗
i Yi,t(0)]

=τt + δt [1 –
n0+1
∑
i=2

ω∗
i ] + [Z1 –

n0+1
∑
i=2

ω∗
i Zi]

′

θt + λ′t [μ1 –
n0+1
∑
i=2

ω∗
i μi]

+ [ε1,t –
n0+1
∑
i=2

ω∗
i εi,t]

=τt + λ′t [μ1 –
n0+1
∑
i=2

ω∗
i μi] + [ε1,t –

n0+1
∑
i=2

ω∗
i εi,t] , (10.6)

http://web.stanford.edu/jhain/synthpage.html
http://web.stanford.edu/jhain/synthpage.html
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where the last line comes from (10.2) and the perfect matching of the synthetic unit,
Assumption 10.2. Now, let’s consider the pre-treatment results written in matrix
notation. YP

i is the T0 × 1 vector of pre-treatment outcomes for unit i with the t-
th element equal to Y obs

i,t . The T0 × 1 vector of pre-treatment transitory shocks is εPi .
Notice that because YP

1 = (Y1,t(0))t=1,…,T0
, following the same steps as above:

YP
1 –

n0+1
∑
i=2

ω∗
i YP

i = λP [μ1 –
n0+1
∑
i=2

ω∗
i μi] + [εP1 –

n0+1
∑
i=2

ω∗
i εPi ] . (10.7)

From Equation (10.7), using Assumption 10.3:

[μ1 –
n0+1
∑
i=2

ω∗
i μi] = (λP′λP)–1 λP′ [YP

1 –
n0+1
∑
i=2

ω∗
i YP

i ]

– (λP′λP)–1 λP′ [εP1 –
n0+1
∑
i=2

ω∗
i εPi ] . (10.8)

The above Equation (10.8) helps to understand the nature of the synthetic control
methodology: the quality of the approximation of the factor loading coefficients
of the treated unit, μ1, by the synthetic unit depends on the distance between the
pre-treatment results of the treated unit and those of the synthetic unit. This obser-
vation argues for the inclusion of pre-treatment outcomes in the program (10.3),
and constitutes the crucial point of the theorem. Furthermore, given that Assump-
tion 10.2 holds, the first term of Equation (10.8) disappears and we have a good bias
decomposition for t > T0 by inserting Equation (10.8) into Equation (10.6):

τ̂t – τt = λ′t (λP
′λP)–1 λP′

n0+1
∑
i=2

ω∗
i εPi

  
:=R1,t

– λ′t (λP
′λP)–1 λP′εP1  
:=R2,t

+ [ε1,t –
n0+1
∑
i=2

ω∗
i εi,t]

  
:=R3,t

.

When t>T0, R2,t and R3,t have mean zero thanks to Assumption 10.1. This is not
the case for R1,t as there is no reason to think that εi,t and ω∗

i are independent for
t ≤ T0 sinceω∗

i depends onYP
1 , …,YP

n0+1, and therefore on εP1 , …, εPn0+1.We can rewrite
it as:

R1,t =
n0+1
∑
i=2

ω∗
i λ′t (λP

′λP)–1 λP′εPi =
n0+1
∑
i=2

ω∗
i

T0

∑
s=1

λ′t (
T0

∑
t=1

λtλ′t)
–1

λsεi,s.
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By Cauchy–Schwarz inequality, since (∑T0
t=1 λtλ′t)

–1 is symmetric and positive
definite, and by using Assumption 10.3:

(λ′t (
T0

∑
t=1

λtλ′t)
–1

λs)
2

≤(λ′t (
T0

∑
t=1

λtλ′t)
–1

λt)(λ′s (
T0

∑
t=1

λtλ′t)
–1

λs)

≤ ( Fλ̄
2

T0cξ
)
2

.

Let ε̃i := ∑T0
s=1 λ′t (∑

T0
t=1 λtλ′t)

–1 λsεi,s. Using Assumption 10.1 and Holder’s
inequality:

|R1,t| ≤
n0+1
∑
i=2

ω∗
i |ε̃i| ≤ (

n0+1
∑
i=2

ω∗
i |ε̃i|m)

1/m

≤ (
n0+1
∑
i=2

|ε̃i|m)
1/m

.

According to Holder’s inequality, we also have:

E (
n0+1
∑
i=2

ω∗
i |ε̃i|) ≤ (E [

n0+1
∑
i=2

|ε̃i|m])
1/m

. (10.9)

And thanks to Rosenthal’s inequality (Lemma 10.2), for a certain constant C(m)
defined in the statement of the inequality:

E|ε̃i|m ≤ C(m) ( Fλ̄
2

T0cξ
)
m

max(
T0

∑
t=1

E|εj,t|m, (
T0

∑
t=1

E|εj,t|2)
m/2

) .

According to the equation above and (10.9), and using Assumption 10.1:

E|R1,t| ≤ C(m)1/m (Fλ̄
2

cξ
) n1/m

0 max ((E|εi,t|
m)1/m

T1–1/m
0

, σ
√T0

) .

According to the decomposition above and Jensen’s inequality:

|Eτ̂t – τt| ≤ E|R1,t| ≤ C(m)1/m (Fλ̄
2

cξ
) n1/m

0 max ((E|εi,t|
m)1/m

T1–1/m
0

, σ
√T0

) .

□
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Proof of Lemma 10.1 Let {θ̂(i)}|Π|i=1 be a non-decreasing rearrangement of {θ̂(Dπ) :
π ∈ Π}. We have:

1 {p(C) ≤ α} = 1 {θ̂(Dobs) > θ̂(k)} ,

for k = ⌈(1–α)× |Π|⌉. Since Π forms a group, the randomization-invariant quantiles
are the same:

θ̂(Dπ)(k) = θ̂(k), for all π ∈ Π,

thus:

∑
π∈Π

1 {θ̂(Dπ) > θ̂(Dπ)(k)} = ∑
π∈Π

1 {θ̂(Dobs) > θ̂(k)} ≤ α|Π|.

By exchangeability and for any π ∈ Π, 1 {θ̂(Dobs) > θ̂(k)} is distributed as
1 {θ̂(Dπ) > θ̂(Dπ)(k)}. Thus, we have:

α ≥ 1
|Π| ∑π∈Π

1 {θ̂(Dπ) > θ̂(Dπ)(k)}

= E [1 {θ̂(Dobs) > θ̂(k)}] = E[1 {p(C) ≤ α}].

□

10.8.2 Additional Results

Lemma 10.2 (Rosenthal’s inequality). Let ξ1, . . . , ξn be n independent random vari-
ables with zero mean, E|ξi|m < ∞ for some even integer m > 2, and let Sn = ∑n

i=1 ξi.
Then:

E|Sn|m ≤ C(m)max (
n
∑
i=1

E|ξi|m, [
n
∑
i=1

E|ξi|2]
m/2

) ,

where C(m) := E(X – 1)m with X ~ (1).

Proof of Lemma 10.2 see Ibragimov and Sharakhmetov (2002). □



Chapter 11
Forecasting in high-dimension

Real-time adjustment of economic and monetary policies requires the most reliable
information possible on current and future economic conditions. However, most
economic series are published with a lag of a few weeks (e.g., inflation, corporate
orders), or even a few months (e.g., GDP, household consumption). Assessing real-
time economic conditions, known as nowcasting (see, e.g., Giannone et al., 2008),
and more generally forecasting at different horizons, are therefore important tasks
where it is interesting not to restrict a priori the different sources of information
that one may want to use. Moreover, these different real-time information, whether
conventional (e.g., employment, unemployment, income, trade, consumption) or
not (e.g., newspaper articles, maritime traffic, bank transactions, Google trends,
etc.), are often published at different frequencies: daily (information flow, stock
prices), weekly (unemployment benefit updates), monthly (inflation), depending
on the variable to be predicted. The latter is often published at a lower frequency,
quarterly like GDP or unemployment according to the International Labor Office
(ILO). It should also be noted that in general, the higher the quality of the data, the
less frequent or fast it is to calculate.

The most representative example of nowcasting is the prediction of the US GDP
by the New York Central Bank, which, until September 2021, published its forecasts
every Friday at 11:15 AM (more details in Bok et al., 2018). The central bank’s fore-
casts are available on their website newyorkfed.org/research/policy/nowcast. These
forecasts were suspended due to the “uncertainty surrounding the pandemic and the
resulting data volatility.” These forecasts are based on a factor model using 37 tradi-
tional economic variables. It is legitimate to wonder whether the high-dimensional
methods developed in the second part of this book could extract useful informa-
tion for short-term forecasting, using other sources of information such as textual
data (Bybee et al., 2020, considers 180 thematic sections of the Wall Street Journal),
satellite data (see, e.g., Moriwaki, 2019, for unemployment forecasting), or search
engine data (see, e.g., Ferrara and Simoni, 2022). The fact that we often have only a
limited time horizon with macroeconomic variables to predict naturally plunges us
into the context of high dimension.

However, using the selection methods from the second part requires adapting
them to the structure of time series data. The first fundamental characteristic is that
we can no longer assume independence of observations. Economic and financial
time series are also known to have fat-tailed distributions, whereas the methods
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from the second part assumed normality or exponential tails. Wemust also take into
account the fact that the series are not sampled at the same frequency (we say they
are not aligned). Finally, these different explanatory variables often have a “struc-
ture,” i.e., they are related to different themes: macroeconomics, different sectors of
activity, financial variables, news, etc., and we would like to be able to incorporate
knowledge of this structure into the selection process.

In this chapter, we will first extend the methods from the second part in Section
11.1 to take into account these specificities. We will then present in Section 11.2 the
limits of these methods, along two main directions. The first one is the criticism of
the sparsity assumption and the second one is the criticism of linearity. Lastly, an
important motivation for these methods is to allow for inference and thus to test
statistically whether certain variables do contain useful information for prediction,
which is described in Section 11.3. These sections are all associated with empirical
illustrations.

11.1 Regression in high-dimension for forecasting

11.1.1 Time series in high-dimension

Several works propose extensions of high-dimensional tools from the second part
of this book to time series, within a frequentist framework (see, e.g., Alquier and
Doukhan, 2011; Basu and Michailidis, 2015; Kock and Callot, 2015; Uematsu and
Tanaka, 2019; Babii et al., 2019; Ferrara and Simoni, 2022; Chernozhukov et al.,
2021; Babii et al., 2022) and a Bayesian framework (see, e.g., De Mol et al., 2008;
Mogliani and Simoni, 2021). In this section, we will mainly follow the approach
developed in Chernozhukov et al. (2021), close to the formalization of the second
part, and in Babii et al. (2019, 2022), which consider series sampled at different
frequencies (MIxed frequency DAta Sampling, MIDAS for short) and other types
of dependencies.

11.1.2 Model and estimator

Consider a forecasting horizonh=0, 1, 2, . . . , whereh=0 corresponds to nowcasting.
Consider also the following forecasting model:

Yt+h = X ′
tβ0 + εt, E(εtXt) = 0, t = 1, . . . ,T, (11.1)

whereXt ∈ Rp, with p potentially larger than n. The vectorXt can contain past values
of Yt and transformations of the initial explanatory variables (see remark below). In
the rest of this chapter, we consider real-time forecasting by setting h = 0 to simplify.
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The methods developed in Section 4 can also be generalized to a system of regres-
sions of this type, see Chernozhukov et al. (2021); Kock et al. (2024). To simplify,
we assume here exact sparsity, meaning that the number of non-zero coefficients of
β0 is bounded by s:

‖β0‖0 ≤ s≪ n. (11.2)

As in the second part, we use a penalized ℓ1-norm estimator for β0:

β̂ = argmin
β∈Rp

1
T

T
∑
t=1

(Yt – X ′
tβ)2 + λ

T

p

∑
k=1

|βk |̂γk, (11.3)

where λ is a fixed parameter below and γ̂k are estimators of the ideal penalties γ0k
that we now describe. Define the variable:

Sk = 1
√T

T
∑
t=1

εtXk, t,

where εt = Yt – X ′
tβ0 is not directly observed. As a result, the ideal parameter and

penalties, respectively λ0 and γ0k, are defined by: λ0 = Q(1 – α), where Q denotes the
quantile of 2c√Tmax1≤k≤p |Sk/γ0k| and γ0k is the long-run variance of Sk, that is:

γ0k =
√√
√

∞
∑
l=–∞

E(Xk, tεtXk, t–lεt–l).

These estimators γ̂k are selected in a similar way to Chapter 7, either by cross-
validation (see Section 5.3 or, more adapted to this context, in Babii et al.,
2019, 2022). The additional difficulty compared to Chapter 7 is that here we
need to take into account the time dependence in the estimation of these penal-
ties. Chernozhukov et al. (2021) propose a two-step procedure using block
bootstrap:

1. Obtain a very preliminary estimator β̌ of β0 using (11.3), where the parameter
is based on the Gaussian approximation λ = 2c ′√TΦ–1(1 – α ′/(2p)), with
c ′ = 0.5 and α ′ = 0.1, and the penalties are, for example, taken to be uniform
γ̌k = 1. Then, preliminary estimators of the errors are formed ε̌t = Yt – X ′

t β̌.
2. Obtain a second preliminary estimator β̃ of β0 using (11.3), where the parame-

ter λ is still based on theGaussian approximation and, at this step, the penalties
are adapted using the Newey–West estimator:

γ̂k =
hT
∑
l=–hT

k ( l
hT
)Cov(Xk,tε̌t,Xk,t–lε̌t–l),
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where k(z) = (1 – |z|)1{|z| ≤ 1} and hT → ∞ is a cut-off parameter (for
example hT = 1.3T1/2, see Lazarus et al., 2018).

3. Update the error estimators ε̃k = Yt – X ′
t β̃ and recalculate γ̃k using ε̃k. Divide

{̃εk} into lT blocks of bT observations, then choose:

λ = 2c√Tq[B]
1–α, (11.4)

where q[B]
1–α is the 1 – α quantile of max1≤k≤p |Z[B]

k / γ̃k|,

Z[B]
k = 1

√T

lT
∑
i=1

ei
ibT
∑

l=(i–1)bT+1
ε̃lXk,l,

and ei ~  (0, 1) i.i.d.

This bootstrap-based approach (11.4) can also be used in the i.i.d setting, e.g., see
Belloni et al. (2018); Lederer and Vogt (2021) for related theoretical results and
Chetverikov (2024) for a survey. The advantage of this selection method is that,
unlike the one based on Equation (7.2), it is not conservative under some regularity
conditions.

11.1.3 Mixed data sampling regressionmodels (MIDAS)

The more realistic cases encountered in practice, including time series sampled at
different frequencies and satisfying an autoregressive model (ARDL-MIDAS type,
see, e.g., Ghysels et al., 2005, 2007), can be expressed in the form of themodel (11.1).
Consider the following equation:

Yt = μ +
J
∑
j=1

ρjYt–j +
p

∑
k=1

1
mk

mk

∑
j=1

βk, jXt–( j–1)/mk, k + εt, (11.5)

where for all k ∈ {1, . . . , p}, the variables Xt, k are sampled at frequencies mk higher
than that of the variable to be predicted Yt (e.g., quarterly for GDP), leading to the
series

(Xt–( j–1)/mk, k)j = 1,...,mk, t = 1,...,T.

Figure 11.1 illustrates a possible case where one may wonder if, in order to predict
Yt based on the past of Xt, which is sampled at a higher frequency, one can avoid
using all the available values of Xt between t – 1 and t, or if a combination of these
can be used. The MIDAS approach thus consists of reducing the dimension of the
problem by moving from the estimation of βk of dimension mk to the estimation of
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Figure 11.1 Illustration of two time series sampled at different frequencies:
Yt annually and Xt monthly

β̃k of dimension L < mk. To do this, a weighting function ω : [0, 1] × RL → R is
considered to manage the different samplings:

1
mk

mk

∑
j=1

βk,jXt–(j–1)/mk,k = 1
mk

mk

∑
j=1

ω ( j – 1
mk

, β̃k)Xt–( j–1)/mk,k.

The standard approach (Ghysels et al. 2007) consists of using the specification

ω (j – 1
mk

, β̃k) = eβ̃1j+β̃2j2 + ... + β̃ljL

∑mk
j=1 eβ̃1j + β̃2j2 + ... + β̃ljL

,

called exponential Almon lags, where Almon polynomials are referring to
{1, k, k2, . . . } in time series.

A more recent approach, with many advantages in terms of computation time,
consists of using an approximation of this function t ∈ [0, 1] ↦ ω(t, β̃k) by a
decomposition on a collection of functions called a dictionary {wl(·) : l = 1, . . . , L}.
Evaluated at ( j – 1)/mk, j = 1 . . . ,mk, we have

ω ( j – 1
mk

, β̃k) ≃
L
∑
l=1

wl (
j – 1
mk

) β̃k, l,

which leads to the representation:

1
mk

mk

∑
j=1

βk, jXt–( j–1)/mk, k ≃
1
mk

mk

∑
j=1

L
∑
l=1

wl (
j – 1
mk

) β̃k, lXt–( j–1)/mk, k

=
L
∑
l=1

β̃k, l (
1
mk

mk

∑
j=1

wl (
j – 1
mk

)Xt–( j–1)/mk,k)

= β̃
′
k,.Zt,k,.,
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using the notation

Zt,k,l =
1
mk

mk

∑
j=1

wl (
j – 1
mk

)Xt–( j–1)/mk,k.

For example, Legendre polynomials can be used as a dictionary, which form an
orthogonal basis for L2([0, 1]). By reinjecting into (11.5), we obtain the following
linear formulation:

Yt = (μ, Yt–1, . . . , Yt–J,Z ′
t,1,·, . . . ,Z ′

t,p,·)(1, ρ1, . . . , ρJ, β̃
′
1,·, . . . , β̃

′
p,·)

′ + εt. (11.6)

By putting this in matrix form, we then reduce it to a model similar to (11.1) and
thus to an estimator of the form (11.3).

In some practical cases, the model is associated with a certain structure of
predictive variables, which is interesting to include in the penalized estima-
tion procedure. One might want to both select the groups of variables that are
most relevant for prediction, and also, within these groups, select the important
ones. The coefficients ρ and βk,· in the linear formulation (11.6) of the MIDAS
model (11.5) being of different natures, there naturally exists a group struc-
ture. Therefore, Babii et al. (2019, 2022) estimate the parameters of the model
formulation (11.6) using the sparse-group Lasso, introduced by Lounici et al.
(2011), which consists of using, instead of the ℓ1 norm in (11.3), a mixed norm
penalization:

Ωγ(β) = γ‖β‖1 + (1 – γ)‖β‖2,1, (11.7)

where γ ∈ [0, 1] is a weight indexing the compromise between the ℓ1 norm and
the group norm ‖β‖2,1 = ∑g∈ ‖βg‖2 where the group structure  is a partition of
{1, . . . , p} for β∈Rp. For example, certainmacroeconomic, financial, or textual vari-
ables, as in the application in Section 11.2.4,may be highly correlated, andonewould
like to introduce this information in the penalization.

11.1.4 Asymptotic properties

In order to establish the asymptotic properties of the estimator (11.3), we need to
specify the dependence structure of the observations in the model (11.1). Here, we
present the results with the dependence structure introduced inWu (2005);Wu and
Wu (2016); Zhang andWu (2017), which consider that the variables and errors have
a functional representation depending on independent innovations. We refer to
Section 11.1.5 describing how to use the notion ofmixing in our context to describe
dependence see Doukhan (2012).
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Assumption11.1 (Dependence structure) For all k = 1, . . . , p, we assume that Xk,t and
εt are stationary processes with representations:

Xk,t = gk(. . . , ξ–1, ξ0, ξ1, . . . , ξt–1, ξt)

εt = h(. . . , η–1, η0, η1, . . . , ηt–1, ηt),

where ξt, ηt are i.i.d. innovations and gk, h are functions measurable with respect to the
filtration generated by (. . . , η–1, ξ–1, η0, ξ0, η0, . . . , ξt–1, ηt–1, ξt, ηt).

The notion of dependence in Assumption 11.1 is quite intuitive and easy to use.
To obtain asymptotic results, we also need to introduce characteristics quantifying
the importance of the dependence of the processes (Xk,·), (ε·), and (Xk,·ε·). Define
the following quantities, considering an i.i.d. copy ξ∗0 of ξ0 and denoting by X∗

k,t =
gk(. . . , ξ∗0, . . . , ξt–1, ξt) the process where ξ∗0 replaces ξ0:

1. θq,k,t := E(|Xk,t – X ∗
k,t|q)1/q for q > 0, is a measure of dependence of ξ0 on Xk,t,

with cumulative effect measured by Θm,q,k = ∑∞
t=m θq,k,t;

2. the adjusted dependence measure ‖Xk,·‖q,ζ = supm≥0(m + 1)ζΘm,q,k, with ζ > 0.

We introduce the same quantities for (ε·) and (Xk,·ε·).

Assumption 11.2 (Dependence structure, continued) We have the moment condi-
tions:

‖ε‖q,ζ < ∞ and, for all k = 1, . . . , p, ‖Xk,·‖q,ζ < ∞, q ≥ 8.

The largest value of ζ such that Assumption 11.2 is satisfied characterizes the
dependence of the process. Large classes of usual processes, for example AR(1) with
an absolute value of the coefficient less than 1 or certain ARCH(1) processes, satisfy
these conditions (see Appendix C.2 in Chernozhukov et al., 2021). Finally, we make
the following assumption, which is a variant of the restricted eigenvalue Assumption
4.4.

Assumption 11.3 (Restricted eigenvalue, variant) Let c ≥ 1, with high probability we
have:

κ(c) = min
β∈[ ,c]

√s‖X ′β‖2
‖β‖1

> 0,

where [ , c] is defined in (4.4),  = {k : β0
k ≠ 0} is the set of non-zero coefficients,

s = | | is the number of non-zero coefficients.

Under Assumptions 11.1, 11.3, and the sparsity assumption 11.2, it follows from a
direct modification of the proof of Lemma 7.1 in the second part (see also Theorem
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1 in Belloni and Chernozhukov (2013)), that if

λ
T ≥ 2c max

1≤k≤p

||||
Sk/√T
γ0k

||||
, (11.8)

with c > 1, c = (c + 1)/(c – 1), then

‖
‖β̂ – β0

‖
‖1 ≤ ( (1 + 2c)(1 + 1/c)s

κ(2c)κ(c) max
1≤k≤p

γ0k)
λ
T . (11.9)

Note that the concentration inequality (7.6) used in the case of i.i.d. observations to
conclude Theorem 7.1, by ensuring that event (11.8) occurs with high probability,
must be adapted to the non-i.i.d. case of this chapter. We present this inequality
here, and then we discuss the different regimes of convergence rates it induces.
These regimes depend on the tails of the distribution and the magnitude of the
dependence.

Theorem 11.1 ((Fuk–Nagaev Inequality, Theorem 2 in Wu and Wu, 2016 or Theorem
5 in Chernozhukov et al., 2021)) Under Assumptions 11.1 and 11.2:

P (2c√T max
1≤k≤p

|||
Sk
γ0k
||| ≥ r)

≤
p

∑
k=1

(
C0‖Xk,·ε·‖qq,ζ

(γ0k)q
ωTT
rq + C1exp (

–C2r2

T(‖Xk,·ε·‖22,ζ/(γ0k)2)
)) ,

where ωT = 1 if ζ > 1/2 – 1/q (weak dependence) and ωT = Tq/2–1–ζq otherwise
(strong dependence).

This inequality, which extends the Fuk–Nagaev inequality, along with (11.9) and
λ as the 1 – α quantile of the distribution of 2c√nmax1≤k≤p |Sk/γ0k|, allows to prove
the convergence rate:

‖
‖β̂ – β0‖

‖1 ≤ C3max
1≤k≤p

max
⎛
⎜
⎜
⎜
⎝
√

s2 log(p/α)
T  

exponential term

‖Xk,·ε·‖2,ζ, (
pωT

αTq–1 )
1/q

  
polynomial term

‖Xk,·ε·‖q,ζ
⎞
⎟
⎟
⎟
⎠

where C3 is a constant independent of T. In this rate, there is a term allowing the
dimension p to grow exponentiallywith the number of observationsT, and a polyno-
mial term. Thus, when the latter dominates the former, we cannot allow the number
of variables p to grow exponentially with T as in the results of the second part. If the
dependence terms ‖Xk,·ε·‖2,ζ and ‖Xk,·ε·‖q,ζ are bounded (see Chernozhukov et al.,
2021, for examples), we can allow p to grow at a rate of Tκ, where κ is typically
decreasing in the persistence of the process and the thickness of the tails of the
distribution.
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11.1.5 Another dependence assumption: mixing

There are alternatives to the dependence Assumption 11.1. The concept of mixing
relaxes the independence assumption by bounding the decay of correlationswith the
past and future of the process as a function of the time difference, see e.g., Doukhan
(2012). Let X = (Xt)t∈Z be a process, P = (Xt1 , . . . , Xtl), and F = (Xtl+1 , . . . , Xtm) repre-
sent a part of its past and future, respectively. The coefficient of α-mixing is defined
as a function of the time difference tl+1 – tl ≥ r:

α(r) = sup
P,F s.t. tl+1–tl≥r

1
2 sup
‖f‖∞≤1, ‖g‖∞≤1

|Cov( f(P), g(F)| ,

where ‖ f‖∞ is the supnormof a function f. This captures themaximumcovariance of
functions fromdifferent parts of the past and future that are at least r units apart. The
process is said to be stronglymixing if α(r) →r→∞ 0. This traditional notion of depen-
dence of α-mixing (and also that of β-mixing) is not weak enough to encompass
certain common cases. Andrews (1984) showed, in particular, that AR(1) processes
are not α-mixing in general. An example of such a process is Xt = (Xt–1 +ξt)/2, where
ξt are i.i.d. random variables following a Bernoulli distribution with parameter 1/2.

The τ-mixing processes are introduced in Dedecker and Prieur (2005) to have a
notion of dependence weaker than that of the α- and β-mixing processes, while still
allowing for asymptotic results. For a stationary process ξt ∈ R with a past t, we
define:

τ(r) = sup
j≥1

1
j sup
t+r≤t1<···<tj

τ(t, (ξt1 , . . . , ξtj)),

where τ(t, ζ) =E ||supf∈Lip1
|E( f(ζ)|t) – E( f(ζ ))||| and Lip1 is the set of 1-Lipschitz

functions on R. The process is said to be τ-mixing if τ(r) →r→∞ 0. Babii et al.
(2019) use this notion and provide a Fuk-Nagaev type inequality under bounded
moments assumptions and a decay rate of τ(r). This inequality also includes the
same polynomial and exponential regimes as in Theorem 11.1.

11.2 Limitations andothermethods

11.2.1 Critical approach of the sparsity hypothesis

Methods for inference in high-dimensional settings can be broadly divided into two
types. The first type is based on the sparsity hypothesis, which assumes a priori
that only a small number of variables among all regressors are useful for prediction.
The second type, known as dense methods, such as factor models, recognize that
all variables potentially have explanatory power, but rely on dimension reduction
techniques to extract maximum information. This raises critical questions about the
empirical relevance of imposing the sparsity hypothesis when using the first type of
methods: it may seem natural in some cases, but
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Several recent papers have raised some concerns with the sparsity assumptions and
the relative fragility in some contexts of sparsity-based methods see, e.g., Giannone
et al. (2021); Wüthrich and Zhu (2023); Kolesár et al. (2023). Among other things,
sparsity-based estimators lack invariance to some normalizations, such as the choice
of baseline category with categorical controls, and in relatively low-dimensional
contexts where p is large but p < n, this assumption is rejected in applications where
it seems justified see Kolesár et al. (2023). Moreover, since it is necessary for estima-
tion, if themodel is misspecified in the sense that this assumption does not hold, it is
generally difficult to refute it without additional restrictions within the framework
we have described so far, leading to the illusion of sparsity as described in Giannone
et al. (2021).

More specifically, Giannone et al. (2021) propose to introduce a model that can
indicate whether the economic problem can be considered sparse rather than dense,
i.e., probably characterized by a small number of explanatory variables. To this end,
they consider a linear model to predict the variable yt:

yt = ν ′
tϕ + x ′

tβ + εt,

where the error term is assumed to be i.i.d. distributed according to a normal distri-
bution  (0, σ2), and νt and xt are regressors of respective dimensions k and l with
k ≫ l, and normalized variance of 1. The two types of regressors have a different
status: the variables νt are those that the researcher always wants to include, while
some of the components of xt may have zero coefficients. The idea is then to impose
a Bayesian a priori (see, e.g., Robert et al., 2007) on the coefficients of xt, allowing
them to be degenerate to a Dirac at 0 with a certain probability (referred to as a
spike-and-slab a priori). This allows for sparsity but does not impose it in the initial
prior. More specifically, for every i = 1, . . . , k:

p(σ2) ~ 1/σ2, ϕ ~ Non-informative Prior,

βi|σ2, γ2, q ~ {  (0, σ2γ2) with probability q
Dirac at 0 with probability 1 – q.

The important point to note about this a priori is that the coefficients β are equal
to zero with a probability of 1 – q and have a normal distribution otherwise. The
hyperparameter γ2 controls the variance of this Gaussian distribution and allows
for parameter shrinkage without forcing them to be zero. They also consider an a
priori on the parameters q ~ Beta(1, 1) and γ2, defined through a non-informative
prior on the

R2(γ2, q) = qkγ2vx
qkγ2vx + 1 ~ Beta(1, 1),
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where vx = 1 is the variance of the regressors, and R2 is the proportion of the
variance of yt explained by x ′

tβ compared to the error. The limitation of the above
approach is that this parametric model may have very poor performance if it is mis-
specified, for example, if the non-zero coefficients β are not normally distributed.
By taking this limitation into account, we can interpret the results of this model as
an example of an a priori distribution on coefficients that leads to a non-sparse a
posteriori.

With the help of simulations, whether consistent or not with the Gaussian
framework presented above, Giannone et al. (2021) show that in cases where
the data generation process is not parsimonious, the Lasso overestimates the
degree of sparsity by forcing too many coefficients to be zero. On the con-
trary, their model is robust to this deviation and allows for a better approxi-
mation of the true level of sparsity. The authors then study six different eco-
nomic datasets. The assumption of sparsity seem rarely justified there: the dis-
tribution of q is not, in all cases except one, concentrated at 0. Moreover, the
identity of the non-zero coefficients is quite uncertain. These results illustrate
the importance, in a prediction context, of questioning and justifying the use of
a model that imposes that only a small number of variables have explanatory
power.

11.2.2 Amixed approach: FARM

Fan et al. (2023) introduce a regression model that combines both sparse and dense
components using latent factors (see also respectively Fan et al., 2023; Beyhum and
Striaukas, 2023, for a similar model in the context of panel data and with mixed-
frequency data), thus addressing the criticism from the previous section.We assume
that we observe an i.i.d. sample (xt, Yt)nt=1 from (x, Y) satisfying a factor augmented
sparse linear regression model (FARM) composed of:

1. A factor model for the regressors xt:

xt = Bft + νt, (11.10)

where B is a weighting matrix for the factors of size p× r, ft is a factor vector of
size r × 1 formed from xt ∈ Rp, and p is potentially high dimensional.

2. A main equation involving the residuals νt from the factor model, which have
high dimension p, and the latent factors ft:

Yt = f ′tγ
∗ + ν ′

tβ∗ + εt, (11.11)

with γ∗ ∈ Rr and β∗ ∈ Rp.
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The model (11.10)–(11.11) encompasses the factor augmented regression pre-
sented in (2.21) when β∗ = 0. By rewriting (11.11) as Yt = f ′tφ∗ + x ′

tβ∗ + εt with
φ∗ = γ∗ – B ′β∗ ∈ Rr, we obtain

Yt = f ′tφ
∗ + x ′

tβ∗ + εt. (11.12)

This shows that it is also amore general case of regression where sparsity is imposed
(φ∗ = 0). The advantage of this approach is that it addresses one of the criticisms
raised in the previous section, as it includes a dense component, allowing for a test
of whether both components are useful for prediction. Fan et al. (2023) develop a
test for the adequacy of the sparse model in comparison to factor-augmented sparse
alternatives via

H0 : β∗ = 0 vs. H1 : β∗ ≠ 0,
based on a desparsification of the Lasso presented in Section 7.3. They also develop
a test of the adequacy factor regression model in comparison to factor-augmented
sparse regression alternatives via: Beyhum and Striaukas (2024) also propose a
bootstrap test of this hypothesis which does not require tuning parameters and is
implemented in the R package FAS. On some empirical examples using the Federal
Reserve Bank of New York (FRED) data described in Section 11.2.4, they reject the
adequacy of the classical factor regression model. This suggest that the sparse part
captures, on top of the dense one, some useful information structure allowing to
improve the prediction of Yt.

H0 : φ∗ = 0 vs. H1 : φ∗ ≠ 0 is sparse.

We rewrite the model (11.10)–(11.11) in matrix form:

X = FB ′ + V (11.13)

Y = Fγ∗ + Vβ∗ +  , (11.14)

where X = (x1, . . . , x n)′, F = ( f1, . . . , f n)′, V = (ν1, . . . , ν n)′, Y = (Y1, . . . , Y n)′, and = (ε1, . . . , ε n)′. Fan et al. (2023) suggest the following procedure:

1. By imposing identification constraints presented in Section 2.6, we estimate
the factors by

(F̂, B̂) = argmin
F∈Rn×r, B∈Rd×r

‖
‖X – FB ′‖

‖
2
F,

subject to the constraint that F ′F/n = Ir and B ′B is diagonal.
2. The regularized Lasso estimator of β∗, γ∗ is then obtained by

(β̂, γ̂) = argmin { 1
2n
‖
‖Y – V̂β – F̂γ‖‖

2

2
+ λ‖β‖1},
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where only the components of β are penalized. Thus, by least squares,

γ̂ = (F̂ ′F̂)–1F̂ ′Y = 1
n F̂

′Y,

and β̂ is obtained by using a Lasso regression of Ỹ = (I – P̂)Y on V̂, where
P̂ = F̂F̂ ′/n is the projector onto the subspace spanned by the columns of F̂.

Under classical assumptions allowing for asymptotic analysis of factormodels, see
Section 2.6, and of the Lasso, Fan et al. (2023) show the consistency of γ̂ and β̂.

11.2.3 Nonlinearity

Remark 11.1 Useof nonlinearMLmethods

Another limitation of the models discussed in this chapter is that even though we can intro-
duce a large number of non-linear transformations of the regressors, thesemodels are linear
in theparameters,while there arepotentiallymany sources of nonlinearity that canenter the
modeling of variables such as GDP, inflation, interest rates, or unemployment. Taking these
into account usingmachine learning remains themainmotivation for using these tools in the
field of macroeconomic forecasting (e.g., Masini et al., 2021; Goulet-Coulombe et al., 2022;
Medeiros, 2022).

In certain contexts such as inflationmodeling (seeMedeiros et al., 2021),machine learning
methods like random forests can outperform classical methods. However, despite theoreti-
cal progress in the i.i.d. case (Section8.3.9) and for dependentdata (Davis andNielsen, 2020),
theoretical understanding of these tools and the conditions under which they can outper-
form classical methods in the latter case remains limited. Kock and Teräsvirta (2016) also
highlight the difficulties associated with using neural networks to predict price indices and
unemployment: predictions are highly sensitive to hyperparameters and the definition of
the estimation window. They show that it is difficult to obtain clear and consistent conclu-
sions regarding the contexts in which they yield better results than traditional methods (i.e.,
a linear autoregressive model with recursive forecasts).

11.2.4 Application: nowcasting of the US GDP

For our application, we use the classic dataset from the FRED, which provides a set
of macroeconomic and financial series of interest (seeMcCracken andNg, 2016, for
more details). The objective is to predict the GDP using this data, as well as series
derived from the processing of theWall Street Journal. We use a simplified approach
in terms of the number of variables, but we refer to Babii et al. (2022) formore details
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Table 11.1 Performancemeasures on the test sample for different prediction methods.

AR(1) Gauss-Lasso Boot-Lasso Sg-Lasso,
without text

Sg-Lasso

Mean squared error 5.115 4.110 3.999 3.626 3.558
Gain relative to AR(1)(%) 19.6 21.8 29.1 30.4

on this application. Specifically, we use three financial indicators and their lags
(the Chicago Fed National Activity Index, the growth of non-farm payrolls, and the
Aruoba-Diebold-Scotti Business Conditions Index), which are monthly indicators,
therefore at a higher frequency than the GDP that we aim to predict. We use the pre-
vious nine months for each explanatory variable considered, and the previous four
quarters for the GDP.We also consider textual data produced by Bybee et al. (2020).
These are series quantifying the attention given to certain topics in the Wall Street
Journal. They are derived from a topic analysis of the data, based on a latent Dirich-
let allocation (LDA) model that will be presented in Section 12.4.3 of the section on
textual processing (see also the detailed results on www.structureofnews.com). We
use four monthly lags of each of the eighty-eight selected textual series, which have
the advantage of being available at the time of GDP prediction (and the sliding win-
dow estimation technique for these series avoids any problem of future information
bias).

In the end, the model we consider is therefore an ARDL-MIDAS type model like
the one in Equation (11.5) from the note above. The training window spans from
Q1 1990 to Q1 2002 (49 quarters) and we evaluate the performance on Q2 2002 to
Q3 2019. We compare several models here:

1. A simple AR(1) model, which serves as our reference (labeled “AR(1)”);
2. A sparse-group-Lasso MIDAS model, as described in the note above and

based on the R package midasml, where we impose a group structure for
each different economic or textual variable (thus encompassing the dif-
ferent lags); the parameters are selected through cross-validation (labeled
“Sg-lasso”);

3. A Lasso-MIDASmodel like the one presented in Section 11.1.2, where we con-
sider two choices of regularization parameters: either based on the Gaussian
approximation (labeled “Gauss-lasso”), or based on block bootstrap (labeled
“Boot-lasso”). A version is available in the R package tsapp.

Figure 1 and Table 2 present the out-of-sample estimation results, where it can be
observed that high-dimensional methods perform better than the AR(1) bench-
mark. The sparse-group-Lasso without text data also yields better results than Lasso
with block-bootstrap penalty, which is very close to the penalty chosen by Gaus-
sian approximation (not shown in the figure for this reason). This may be because
the penalty provides additional information, specifically about the data structure.

http://www.structureofnews.com/
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Figure 11.2 Nowcasting of the US GDP using financial, macroeconomic, and textual data.

The parameter γ of the penalty Ωγ for the sparse-group-Lasso was chosen as
fixed, but the performance can still be improved by choosing it through cross-
validation, as in Babii et al. (2022). However, the gains from using text data, in
addition to financial and macroeconomic data, appear to be relatively small in
this case. For a more precise statistical comparison and a more thorough analysis
of the gains of using text data in the nowcasting context, we refer to Babii et al.
(2022).

11.3 TestingGranger causality

Forecasting time series using statistical learning is not the only task of interest
when working with such data. Another common statistical task is to test hypothe-
ses, as in the previous empirical application where we aim to identify significant
variables. To do so, we will use an adaptation of the central limit theorem to
establish simultaneous confidence regions for groups of coefficients estimated by
Lasso. Section 11.3.1 extends the results described in Section 7.3 to the case
of time series. As mentioned in the second part, given the estimation of other
high-dimensional nuisance components, we need to employ an orthogonaliza-
tion procedure to hope to be robust to the regularization bias that arises from
selection.

11.3.1 Joint inference on a group of coefficients with time series

This section complements Section 7.3 of this book by presenting the adaptations to
be made when dealing with non-i.i.d. data. Consider again the context of Section
11.1.2 and the model (11.1), still with h = 0. The objective here is to perform
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simultaneous inference for a group of coefficients G ⊆ {1, . . . , p} of coefficients
β0,G = {β0,j, j ∈ G}. The estimation method for the inverse of Σ, denoted by Θ̂,
proposed by Meinshausen and Bühlmann (2006) and described in Section 7.3 can
be directly adapted. Similarly, the bias-corrected estimator of β0,G is β̌G = β̂G + BG,
where the initial estimator β̂ is the sparse-group Lasso introduced in Section 11.1.2:

β̂ = argmin
β∈Rp

1
T

T
∑
i=1

(Yt – X ′
tβ)2 + λΩγ(β),

where the penalty Ωγ is defined in (11.7) and the bias correction is:

BG = Θ̂G (
1
T

T
∑
t=1

Xt(Yt – X ′
t β̂)) , (11.15)

where ΘG is the submatrix of Θ corresponding to the coefficients in group G.
Under stationary assumptions, restrictions on dependence (τ-mixing, see the

remark in Section 11.1.4), as well as moment conditions (allowing for heavy tails),
and for an increasing number of regressors (s2 log(p)2/T → 0), Babii et al. (2019)
then show that the bias-corrected sparse-group Lasso estimator β̂G is asymptotically
Gaussian, for any group G ⊆ {1, . . . , p},

√T (β̌G – β0,G)
d⟶  (0,ΞG), (11.16)

where ΞG is the long-term variance ΞG = limT→∞ Var ( 1
√T

∑T
t=1 εtΘGXt) and ΘG is

the submatrix of Θ corresponding to the coefficients in group G.

11.3.2 Granger causality tests in high-dimension

As a reminder, the Granger causality concept, introduced by Granger (1969) and
Sims (1972), is a property that characterizes the fact that one variable helps pre-
dict another, even after taking into account its entire past and the rest of the
available information. This notion is statistical because it is related to the pre-
dictive ability of a variable and generally does not allow for rigorous counterfac-
tual situations (Pearl, 2000). Therefore, it is a weaker notion than the causality
defined in terms of the treatment effect, used in the second and third parts of this
book.
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More specifically, let’s consider three time series Wt := (Yt,Xt,Zt), and denote by
PL(Yt+1|(Wt)t∈R) the linear projection of Yt+1 onto (Wt)t∈R, the set of information
available at time t. We say that (Zt)t∈R does not cause (Yt)t∈R in the sense of
Granger if

PL(Yt+1|(Wt)t∈R) = PL(Yt+1|(Yt)t∈R, (Xt)t∈R).

More stringent forms of this definition can also be defined in terms of conditional
expectations or distributions. For instance, considering the linear projection:

Yt+1 = α0 +
K
∑
j=0

βjZt–j +
∞
∑
j=0

γjXt–j +
∞
∑
j=0

δjYt–j
  

Controls for “all information available at t”

+ εt+1, (11.17)

an implication of the non-Granger causality is

H0 : βj = 0 ∀j ∈ {0, . . . ,K}, H1 : ∃j ∈ {0, . . . ,K}, βj ≠ 0. (11.18)

This implication can be tested. Note that, in (11.17), the number of control vari-
ables is generally of high dimension. When past available information is limited,
a Granger causality test is performed through a Wald test or an F-test, where the
F-statistic associated with β0 = · · · = βK = 0 is calculated.

With the result of asymptotic normality (11.16) (also see Sections 4.2 and 5.6 in
Chernozhukov et al., 2021), we can test Granger causality, including a large number
of explanatory variables. Consider the model:

Yt+1 =
K
∑
j=0

βjZt–j +
p

∑
j=K+1

βjWj + εt+1, (11.19)

where W is a vector of size p – K including a constant and the past of control vari-
ables X and Y, and εt+1 is an innovation independent of Wj and the past of Zt. In
this framework, with G = {0, . . . ,K}, we want to test if (Zt, . . . ,Zt–K) provides useful
information to predict Yt+1 that is not contained in W. This is equivalent to testing
(11.18). Under the assumptions that lead to (11.16), the asymptotic distribution of
the Wald statistic is known:

T := T (β̂G + BG – β 0,G)
′
Ξ̂–1
G (β̂G + BG – β0,G)

d⟶ χ2|G|,

where χ2|G| follows a χ2 distribution with |G| = K + 1 degrees of freedom and Ξ̂G
is a consistent estimator robust to heteroscedasticity and autocorrelation (HAC) of
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the long-term variance ΞG (see the adaptation of Newey et al., 1987; Andrews, 1991
by Babii et al., 2019, in the high-dimensional context and Lasso estimation of the
residuals). The test is then rejected at the level α when the statistic T is strictly
greater than the 1 – α quantile of the χ2|G| distribution.

Chernozhukov et al. (2021) propose a method to make inference about a
group of coefficients in the time series framework introduced in Section 11.1.1.
They use a double selection estimation procedure, similar to the one described
in the second part for the i.i.d. case. The main modification to note is the use
of a block bootstrap. The test performed here can also be done using their
approach.

11.3.3 Application: text and GDP prediction

We continue using the context of the application from the previous Section 11.2.4,
in order to perform the Granger test for the use of the textual variables in the pre-
diction. We use the R package midasml to estimate ΞG and BG. In the case of
“sparse-group Lasso with text” from Section 11.2.4, we focus on the explanatory
power of coefficients belonging to categories related to finance, growth, and cri-
sis (see the details of these categories according to the codifications from www.
structureofnews.com inTable 11.2). Table 11.2 presents the test results when consid-
ering the explanatory power of these groups of variables taken together or separately.
In all cases, the test is not rejected at the 5% significance level. The variables that
seem to have the most explanatory potential are the variables related to finance,
which makes sense given the importance of the 2008 financial crisis in the period
considered. This tends to confirm that in this context, the information provided
by the text for prediction is weak. We refer to Babii et al. (2019) for a similar
application on news and on the VIX stock index (indicator of S&P 500 volatil-
ity, the main US stock index) where, on the contrary, they show that news related
to the financial crisis seems to have an impact on the VIX, in terms of Granger
causality.

Table 11.2 Granger test results

Category All Finance group Growth group Crisis group

Statistic 6.711 5.442 0.985 1.111
5% critical value 16.91 7.814 5.991 5.991
p-value 0.667 0.142 0.611 0.573

Note: The test is not rejected at the 5% significance level for any of the tested news categories.
The “Finance” group contains news related to Profits, M.A, Savings-loans, the “Growth” group
contains Economic.growth, Revenue.growth, and the “Crisis” group contains Financial.crisis,
Recession, according to the codifications from www.structureofnews.com.

http://www.structureofnews.com
http://www.structureofnews.com
http://www.structureofnews.com
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11.4 Summary

Key concepts

Nowcasting, high dimension, mixed frequency data sampling (MIDAS), block boot-
strap, sparse-group Lasso, mixing, Fuk–Nagaev inequality, sparse methods, dense meth-
ods, factor augmented sparse linear regression model (FARM), Granger causality, Lasso
desparsification.

Additional references

Webriefly discussednon-linearmethods andwe refer toMasini et al. (2021);Medeiros (2022);
Babii et al. (2023) formore comprehensive treatments of thesemethods, which are very sim-
ilar to the presentation of these tools in the i.i.d. framework of our introductory Chapter
2, except for the choice of the estimation window for the partitioning between training
and evaluation samples, which must be well adapted to the structure of the time series
data. Except for Section 11.2.1, we developed a purely frequentist approach.We recommend
reading De Mol et al. (2008), Mogliani and Simoni (2021) for a Bayesian approach.

Codeanddata

The code Nowcasting_application.R used for the applications of this section
is available on the courseʼs GitHub. It uses the textual processing of the journals
Monthly_Topic_Attention_(Theta).csv available at www.structureofnews.com
and performed by Bybee et al. (2020). The R package midasml allows for the implemen-
tation of the MIDAS methods from Section 11.1.2 and is also useful for implementing the
Granger causality test. The R package tsapp contains a direct implementation of the block
bootstrap (labeled “boot-Lasso”) mentioned in Section 11.1.2.

Questions

1. What are the peculiarities of macroeconomic and financial time series that require
adaptation of the theoretical Lasso results developed in the previous sections?

2. Provide the interpretation of the mixed-norm penalization of the sparse-group Lasso.
3. Why is a bias correction needed for making inference on a group of parameters using

the Lasso?
4. What is the risk of using a sparse method? Explain how the FARM approach addresses

this problem.

http://www.structureofnews.com
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Chapter 12
Workingwith text data

Natural language processing (NLP) encompasses the set of concepts and algo-
rithms that allow for the automatic processing of human language. “Natural” refers
to the opposition between computer languages, such as C++, Python, etc., which
are devoid of any semantic ambiguity, and human languages, for which words are
often polysemous and whosemeaning varies greatly depending on the context. This
book focuses solely on the written form of language, excluding its oral counter-
part (referred to as automatic speech recognition, ASR), which is more complex
and currently less used in the economic literature. It is important to note at the
outset that NLP extends beyond the realms of statistics and econometrics. Recent
breakthroughs, exemplified by the enthusiastic response and concerns arising from
ChatGPT, should be integrated into the toolkit of empirical economists Amultitude
of relevant economic data is only available in the form of strings of characters: news-
paper articles, central bank speeches, stock analyst reports, political statements,
social network comments, death reports, marketing messages extolling the merits
of a product, etc. Whether it is the leveraging search engines queries to make eco-
nomic forecasts (e.g., Ferrara and Simoni, 2019; Ke et al., 2019), measuring racial
hatred (e.g., Stephens-Davidowitz, 2014), encoding textual information to cap-
ture qualitative information about a product or service (e.g., Hoberg and Phillips,
2016; Bajari et al., 2021), capturing cultural stereotypes (e.g., Kozlowski et al.,
2019), etc. Textual data represents an untapped goldmine underutilized by empirical
economists.

With the exception of the simplest applications, a sufficiently rich processing
of textual data requires manipulating high-dimensional mathematical objects, and
therefore using appropriate tools, such as those seen inChapter 4. For example, if we
take a message of T words constructed from a dictionary of W unique words, then
the unique vector representation of a givenmessage lies in a space of dimensionWT.
This often implies pre-processing the document corpus to reduce the dimensional-
ity of the problem, in particular by removing stopwords, lemmatizing, or stemming.
However, even after this step, the problem at hand often remains high-dimensional,
and the methods used must deal with this specificity.

Furthermore, if we consider, for example, a simple vector representation of a ten-
word sentence written in a language using a vocabulary of W words (where W is
much larger than ten, e.g., the English language has tens of thousands of words), we
end up with a vector of size W filled with zeros except at the positions of the words
present in the sentence – this is what is called the one-hot vector representation.

Machine Learning for Econometrics. Christophe Gaillac and Jérémy L’Hour,
© Christophe Gaillac and Jérémy L’Hour (2025). DOI:
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We therefore have a very sparse feature vector. On the one hand, most modern
machine learning algorithms perform better with dense vectors. And on the other
hand, this representation is insufficient because it will not be able to capture the
semantic similarity between two sentences using synonymous terms. This is why
natural language processing relies largely on the concept of word embeddings, that
is, a condensedmathematical representation of each word reflecting the structure of
language.

This part of the book is divided into three chapters. Chapter 12 provides a general
introduction to the processing of text, showing how to handle this unstructured data
in order to connect, as much as possible, to standard statistical techniques. It also
presents basic language models. Chapter 13 introduces the distributed representa-
tion of words, leading to meaningful lexical embeddings that reflect the structure of
language. Finally, Chapter 14 addresses modern language models.

The guiding thread of this division into three chapters is the complexity increase
of the language model underlying the adopted approaches. In other words, we
start from a very basic representation of words and progress towards a repre-
sentation that imitates the structure of language. Thus, the first chapter makes
use of tools mainly based on word frequency. This is “NLP 1.0” if you will:
a low-tech and somewhat outdated approach, but that can work well depend-
ing on the application and does not require large computing resources. The
second chapter introduces the concept of lexical embeddings, allowing for the
reflection of linguistic notions through simple mathematical operations. Dating
back to the early 2010s, this technology takes the context into account, but in
a fixed way: although the representation of a word has been learned in-context,
it does not change with the sentence a word is in. The last chapter finally
presents modern language models, a technology that emerged roughly after the
famous “Attention is all you need” paper (Vaswani et al., 2017) and where lex-
ical embeddings fully change as the context surrounding the usage of a word
changes.

This chapter combines two objectives. The first consists of introducing the
methodological tools necessary to convert character strings into numerical data in
order to enable the use of standard statistical and econometric tools such as linear
regression. The second is to introduce rudimentary language models.

12.1 Basic concepts and roadmap

Language processing encompasses a variety of tasks such as language modeling,
morphosyntactic tagging, information extraction, text generation, named entity
recognition, etc. In this text, we will limit ourselves to introducing the basic build-
ing blocks and exploring how text data can be exploited through standard statistical
methods.
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12.1.1 Definitions

For this chapter and the next two, the following concepts will be key:

– A word n-gram is a sequence of n words. For example, the sentence “The dog
is eating a bone” is made up of the unigrams {the, dog, is, eating, a, bone}, the
bigrams {the dog, dog is, is eating, eating a, a bone}, etc.

– A character n-gram is a sequence of n characters. Thus, the word “eating” is
made up of the bigrams {ea, at, ti, in, ng}, the trigrams {eat, ati, tin, ing}, etc.

– A token, denoted as w, is the basic semantic unit. It is defined as an element of
a dictionary  , which is a set of size W := | |. A token can be indexed either
directly as w ∈  or via its position in  , w ∈ {1, . . . ,W}, interchangeably.
The token is not defined a priori but depends on the task. Note that, in a basic
sense, a token can be a word but also a word n-gram or a character n-gram.

– A document is a sequence of T tokens, denoted as:

(w1, . . . ,wt–1,wt,wt+1, . . . ,wT),

where wt is the t-th token in the sequence. Depending on the application, a
document can be a sentence, a paragraph, a newspaper article, a tweet, a book,
etc.

– A corpus is a collection of D documents. This is our dataset.

12.1.2 Road-map for leveraging text data

Most econometric applications involving analysis of text data can be divided into
three main steps using the terminology inspired by Gentzkow et al. (2019). Let’s
assume we have a corpus of D documents and a vocabulary ofW terms.

1. Numerical representation of raw text. This first step simply involves trans-
forming a document to an array of numbers. This array can be the result of a
one-to-one mapping between tokens and integers while preserving the order
as what is done with modern tokenization (see Chapter 14), or can use less
sophisticated, bag of words, approaches that do not preserve the order. An
example of the latter and a traditionally used representation is the document-
term matrix, which takes the form of a matrix that counts the number of
occurrences of token w in document i. As such, it is of dimension equal to
the number of documents by the number of relevant terms (D × W ) and is
generally very sparse, because each document only spans a small portion of
the vocabulary.

2. Information retrieval. This step can be seen as either a compression step,
or a selection step. Still using the example of the document-term matrix, it is
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often assumed that such a matrix can be well approximated by a low-rank rep-
resentation and so that its dimension can be reduced using a singular value
decomposition. Another approach, still in the bag-of-word domain, relies on
using a distributed representation of words and averaging the representation
of every token from the document (see Chapter 13). For simpler applications,
this step is optional or can be limited to selecting columns of the document-
term matrix. For example, when conducting financial sentiment analysis, a
popular choice is to use the lexicon established by Loughran and McDonald
(2011), which contains terms with positive and negative connotations. Dur-
ing this step, there is always a trade-off between maximizing information and
minimizing noise.

3. Causal or predictive analysis. This is a final regression or classification step
that is made possible once the numerical features have been extracted from
the text. This task consists in estimating a quantity of interest that depends on
the distribution of a certain target or outcome variable conditionally on the
features.

The information retrieval step is crucial for the interpretability of causal analysis.
For example, consider the case where one wants to understand how a job appli-
cant’s CV influences their return to employment, i.e., their probability of finding a
job within a six-month window (the outcome variable). Since each CV is unique,
we cannot directly estimate the effect of an individual biography. The econometri-
cian could define a coding function that maps the text representation to the latent
space in many ways. This mapping could be learned automatically from textual
data, by searching for the presence or absence of the word “plumber” or a group
of words or phrases indicating a person has this type of training. Another possibil-
ity is to group individuals with substitutable skills, for example, by defining clusters
of similar CVs. This learning phase and the structure given by the researcher to the
text representation must be carefully adapted based on its final use in subsequent
analysis.

Finally, note that this three-step methodology constitutes what we call “NLP 1.0”
for the purpose of this book. At present, and since the late 2010s, “off-the-shelf ”
approaches, such as those popularized by the transformers library from Hug-
gingFace, are available and generally consist of two steps: (i) a tokenization step,
which is more or less equivalent to step 1 above, in addition to the normalization
step that we will study in the next section, but preserves the sequential aspect of
the text, and (ii) an inference step, which encompasses steps 2 and 3 and involves
processing the tokenized sequence through a neural network consisting of millions
or even billions of parameters to extract a relevant and contextualized numeri-
cal representation (equivalent to step 2) or directly a numerical value reflecting a
task of interest (here, we directly skip to step 3). For each of these two steps, we
distinguish a learning phase that allows us to learn the model parameters using
suitable data (vocabulary for the tokenizer, parameters for the neural network),
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and a prediction phase that uses these algorithms. This modern approach will be
introduced in Chapter 14.

12.2 NLP1.0: text-processing tools to build tabular data

12.2.1 Pre-processing

Let’s focus on the concrete definition of the basic semantic unit for a text analysis
task, that is, the definition of the token. The purpose of this data processing phase is
to transform a document into a list of tokens relevant for analysis, through several
steps:

1. Normalization: this step aims to format the character strings composing the
documents, by encoding them in a relevant format such as UTF-8. This step
can also force the words to be lowercase in order to avoid duplicating tokens.
In the case of texts from social networks, for example, it may be interesting
to remove accents if it is suspected that the users of the network have not
systematically made use of them.

2. Tokenization: each character string is divided into relevant individual ele-
ments that will constitute the dictionary. This is when the nature of the tokens
to be used is decided. It can be decided to consider only words, or word bi-
grams, tri-grams, etc., or even character n-grams. Punctuation and numbers
can be kept if they are meaningful for the application, or they can be elim-
inated. If the documents come from the internet, such as tweets, it may be
interesting to keep emojis. When considering n-grams with n > 1, certain
n-grams that do not have much meaning can also be eliminated (see Section
12.2.2). This step is largely automated, without necessarily requiring a token
to define an intelligible semantic unit as we will see in Chapter 14.

3. Stop-word removal: stop-words are words that do not have a meaning by
themselves, such as articles or prepositions. It is generally decided to remove
them.

4. Stemming and lemmatization:
– Stemming: this step consists of pruning a word to obtain its stem, by

removing the suffixes or prefixes. For example, the term “careless” has the
stem word “care.” In English, a standard stemming algorithm is the Porter
stemmer.

– Lemmatization: this step consists of finding the lemma of a word. When it
is a noun, it involves returning to its singular form from its plural form, or
changing from a feminine form to a masculine form. When it is a verb, it
involves returning to the infinitive form. This step is similar to stemming,
but it is a more complex operation as it involves more abstract linguistic
notions and the techniques used are more difficult to implement.



240 Machine Learning for Econometrics

These four steps define a bottom-up approach seeking to prune the vocabulary. An
alternative approach can be based on starting with a well-defined list of terms and
trying to detect them in the corpus. But even in the context of such an approach, it
may be beneficial to perform stemming or lemmatization to improve recall.

Remark 12.1 Regular expressions

The steps previously described are automated in standard NLP libraries such as nltk or
spaCy. However, we cannot forget tomention regular expressions. A regular expression is a
string that can make use of special characters called quantifiers to describe a string pattern
according to a specific syntax. For example, the regular expression som∗will refer to words
such as “some” or “something” but not “lonesome” or “smile” since the quantifier ∗ des-
ignates zero, one, or more arbitrary characters. Regular expressions often prove useful, for
example, for identifying quantities, volumes, or prices in a document.

This tool is beyond the scope of this book. However, Chapter 2 of Jurafsky and Martin
(2019) discusses regular expressions in details.

Let’s take an example: “Of all the ways to eat eggs, my favorite is the most fussy:
devilled, the art of scooping out hard-boiled eggs and re-stuffing themwith a jazzed-
up yolk mixture.”

The tokenization into unigrams shows that this sentence is composed of the fol-
lowing 28 unique tokens: “ ,” “.,” “:,” “a,” “all,” “and,” “art,” “devilled,” “eat,” “eggs,”
“favorite,” “fussy,” “hard-boiled,” “is,” “jazzed-up,” “mixture,” “most,” “my,” “of,” “out,”
“re-stuffing,” “scooping,” “the,” “them,” “to,” “ways,” “with,” “yolk.”

After excluding stop-words using the nltk library, we are left with the list of
the following 16 tokens: “ ,” “.,” “:,” “art,” “devilled,” “eat,” “eggs,” “favorite,” “fussy,”
“hard-boiled,” “jazzed-up,” “mixture,” “re-stuffing,” “scooping,” “ways,” “yolk.” Note
that this operation keeps the punctuation, which may not be necessary. The list
of stop-words is therefore arbitrary and should be reconsidered according to the
application context. Let‘s remove them for the next step.

Passing through a stemmer gives the following list: “art,” “devil,” “eat,” “egg,”
“favorit,” “fussi,” “hard-boil,” “jazzed-up,” “mixture,” “re-stuff,” “scoop,” “way,” “yolk.”
You can observe that plural forms have been reduced to singular, verbs to their
stem, etc.

12.2.2 Selecting n-grams with mutual information

It is often necessary to prune the vocabulary, for example by removing stop-words,
as mentioned in the previous section. However, this task is more delicate when it
comes to selecting bi-grams. Let’s take the example of the sentence “He lives in the
city of New York.” composed of the bi-grams: “he lives,” “lives in,” “in the,” “the city,”
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“city of,” “of New,” “New York.” Intuitively, only the bi-gram “New York” deserves to
be kept as it refers to a city name, whereas the other bi-grams do not a priori provide
more information than the constituent unigrams.

To automatically detect bi-grams that have a meaning from the others, one can
use the point-wise mutual information (PMI) defined between a target wordwt and
a context word wc by the following formula which will be computed over the entire
corpus:

PMI(wt,wc) = log2 (
P̂(wt,wc)
P̂(wt)P̂(wc)

) .

The numerator gives the empirical probability of observing the word wc in the con-
text of the word wt for a context defined either as a bi-gram, or as a window around
the word wt (Section 13.2), or as an entire document. The denominator gives this
probability if we assumed that the occurrence of these two words was independent.
Thus, a PMI value greater than zero indicates that the words wt and wc appear in
the same context with a frequency higher than expected if we assumed it was purely
random. In the context of the previous example, we may empirically find a high
value for the mutual information between the words “New” and “York” leading to
the retention of the bi-gram “New York.” One can then set a threshold in order to
retain only meaningful bi-grams.

Since for a given corpus, a majority of the words are never used in the same con-
text, the value P̂(wt,wc) can be equal to zero. To solve this problem, the negative
values of the fraction can be replaced by zero:

PMI(wt,wc) = max [log2 (
P̂(wt,wc)
P̂(wt)P̂(wc)

), 0] .

12.2.3 The document-termmatrix

The bag of words representation is the simplest representation of a document. It
assumes that the order of words does not matter and that a document is described
by a vector of size equal to the vocabulary length, where each element counts the
number of times the corresponding token appears in the document. For a corpus of
D documents, with a vocabulary of size W, this results in a matrix C of dimension
D × W. This is the document-term matrix. In general, only a tiny fraction of the
vocabulary words appear in a given document resulting in very sparse rows for the
matrix C. In this model, the row Ci represents document i so that C := (C′

i)i=1, . . . ,D.
Obviously, the length of Ci depends on the definition of the vocabulary, and thus on
the nature of the steps described in the previous section. Notice that normalizing the
rows of the matrix by the sum of their elements, gives the term frequency of each
token in a document, which we will denote fi, t := Ci, t/ ‖Ci‖1 below.
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C can be built from raw counts, or by overweighting words that appear frequently
in few documents and underweighting words that appear often inmany documents.
The former set of words contains some signal that can helps characterize documents
well, while the second set contains words that have no discriminatory power. To
implement this, a common transformation is the TF-IDF (term frequency-inverse
document frequency) weighting. It gives importance to words that appear multiple
times in few documents. The formula for token t in document i out ofD documents
is given by:

(tf – idf )i, t = fi, t
Term Frequency

× log ( D
∑D

j=1 1{fj,t > 0}
)

  
Inverse Document Frequency

,

fi, t =
Number of times token t appears in document i

Number of tokens in document i ,

The term IDF is the logarithm of the inverse of the proportion of documents con-
taining t, which will be low for a common word. For example, Cagé et al. (2019)
adopt a TF-IDF approach to group documents by semantic similarity in order to
study the online spread of information.

12.2.4 How tomeasure similarity?

Recall that for two real vectors of dimension p, x and y, the Euclidean distance is
given by:

‖x – y‖2 :=
√√√
√

p

∑
j=1

(xj – yj)2,

while the cosine similarity is defined as:

cossim(x, y) := x′y
‖x‖2 ‖y‖2

.

Cosine similarity gives a value between -1 and 1. Vectors that are aligned have
a value of 1. Opposite vectors have a value of -1. And orthogonal vectors have a
value of 0. It can easily be transformed into a distance by taking 1 – cossim(x, y).
Both the Euclidean and the cosine distances measure a degree of similarity, since
they decrease as both vectors become more similar. Notice that in NLP in gen-
eral, cosine similarity is the “distance”’ of choice, as it cares more about alignment
between vectors, tolerating differences in magnitudes.

In the context of the document-termmatrix for example, where documents i and j
are represented by vectors Ci and Cj, although the two documents could display the
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same distribution of word usage over the vocabulary, one may be much longer than
the other, so that the Euclidean distance between two vectors may be large although
the two documents are close. In the toy case where Cj = αCi for some positive real
number α, ‖Ci – Cj‖2 = |1 – α| ‖Ci‖2, while cossim(Ci,Cj) = 1.

12.2.5 Textual regression

The previous method allows to build numerical features by converting a corpus of
texts into a simple matrix representation such as C or its counterpart obtained from
the TF-IDF transformation. Suppose there is an outcome Yi associated with docu-
ment i in the corpus. We may then want to explain these results by the content of
this document. To do so, take the rowCi as features that summarize numerically this
information:

Yi = C ′
i β0 + εi.

Note that this is a high-dimensional regression problem since there areW explana-
tory variables and W is generally large. To estimate β0, one can use penalized
regression techniques, random forests, or neural networks (Chapter 2). Another
approach consists in determining a priori the important terms with respect to the
economic phenomenon being studied, either in an ad hoc manner, or by using a
lexicon established in the literature, such as that of Loughran andMcDonald (2011)
for financial applications, for example.

Many empirical articles use such tools. For example, Hansen et al. (2019) use the
content of the Bank of England’s inflation report to assess the impact of the central
bank’s communication on financial markets. One could also use the information
contained in companies’ quarterly earnings call to explain the evolution of their
stock prices (e.g., Isichenko, 2021). Another standard example is the prediction of
stock returns using newspaper articles (e.g., Ke et al., 2019).

12.3 Empirical applications basedonword frequency

This section presents two empirical social science applications that use textual data
as described in the previous section.

12.3.1 Impact of racism on American elections

Stephens-Davidowitz (2014) asks the following question: “Does racism cause a
significant loss of votes for a Black candidate in contemporary America?” He
assesses racial animosity in a county based on the percentage of a popular search-
engine queries that include a well-known racially connoted term. The intuition
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is that people tend to not reveal their true opinions when asked in surveys, and
that search engine queries, made in privacy, more easily express socially taboo
opinions. He shows that the rate of racially connoted queries is a negative and sig-
nificant predictor of votes cast for Obama in 2008 and 2012, while controlling for
Kerry’s share of votes in 2004. The rate of racially connoted queries in county i is
denoted as:

Rate of connoted queriesi = (
Queries including the term
Total number of queries )

i, 2004–2007
,

where the “term” in question is a well-known racist adjective. To test the impact
of racism on the score of a Black candidate in presidential elections, the author
regresses the difference between the share of votes for Barack Obama in 2008 and
the share of 2004 votes for Democratic candidate John Kerry on this query rate.
The estimated model is:

(%Obama2008 – %Kerry2004)i
= Rate of connoted queriesi × τ + X ′

i β + εi,

where Xi contains control variables and an intercept, and τ is the parameter of
interest. The results are statistically significant and partially explain why candidate
Obama received fewer votes in areas where the rate of racially connoted queries
is highest, compared to another Democratic candidate. This racism is estimated to
have cost the candidate Obama an average of four percentage points.

A limitation of this approach, called the dictionary method, is that it focuses solely
on variation through a limited number of dimensions (here, a single term), while
completely ignoring its context of use. In fact, racial slurs can undergo cultural re-
appropriations, and theirmeaning can change depending on the context (e.g., in this
application, a number of rappers re-appropriate the term in question, thus altering
its significance). In a sense, this application requires very little knowledge of any
NLP technique, but would potentially benefit from including queries for synonyms
of the target query found in a data-driven way.

12.3.2 Definition of business sectors using company descriptions

Hoberg and Phillips (2016) exploit 10-K reports, which are annual mandatory
descriptions of goods and services offered by publicly traded firms in the United
States, to define a measure of similarity between them. The objective is to provide
a data-driven definition of a market rather than an expert opinion-based one. The
unit of observation (i, t) is the firm-year pair. The documents are individual 10-K
forms, represented individually by a vector Ct

i ∈ Rnt resulting from a processing
method similar to those described in the previous section. The data contains 50,673
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companies 10-K reports per year. They pay particular attention to proper nouns and
limit the analysis to nouns and proper nouns that do not appear in more than 25%
of all product descriptions. This leads to n1996 = 61, 146 unique nouns and proper
nouns in 1996 and n2008 = 55, 605 in 2008. The data is available via the edgar and
edgarWebR libraries in R, which provide access to the Edgar website of the Securities
and Exchange Commission (SEC) where the legal descriptions of 10-K companies
are stored.

A cosine similarity score per pair of firms i and j, stij := cossim(Ct
i,Ct

j) for a year
t measures the proximity of descriptions of goods and services offered by the two
firms. The square matrix of these stij scores defines an affinity matrix that measures
proximity links between firms.

Next, this affinity matrix is processed through a clustering algorithm to define
sectors. The initial state assumes that each firm constitutes its own sector. The algo-
rithm then groups the most similar firms into sectors one by one, using, when there
are several firms in a sector, an average pairwise similarity of firms for all pairs of
firms in sectors G1 and G2:

stG1,G2 = 1
|G1||G2|

∑
i∈G1

∑
j∈G2

stij.

The algorithm stops when the number of sectors reaches a predefined
number.

The predicted sector membership of each firm-year pair allows to analyze the
effect of shocks experienced by themilitary and software industries on supply chain
links and competition between firms. The events of September 11, 2001 pushed
firms to enter the buoyant military markets and pushed products from this industry
towards “the collection of information off the battlefield” and “products for potential
ground conflicts.”

Note that two problems can arise when using cosine similarity computed from
document-term matrix rows, which can lead to inaccurate similarity despite sim-
ilar content: synonymy and polysemy. This problem cannot be solved without
considering the context of the sentence or without using generative (i.e., struc-
tural) models to capture the text. Chapter 13 presents ways to deal with syn-
onymous terms, and Chapter 14 presents ways to consider the context of a
sentence.

12.4 Languagemodelingwith latent variables

This section is an introduction to simple language models. The assumption of
independence between each word in a document, known as the unigram model,
described in Section 12.4.1, is the starting point for language modeling. We then
introduce complexities one step at a time.
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12.4.1 The unigrammodel

The unigram model is the simplest language model. It makes the convenient
assumption that the probability of observing a given word does not depend on
the surrounding words. As a result, the maximum likelihood estimator of this
probability is given by the word frequency.

Start with a representation of a document of length T as a sequence of words
(W1, . . . ,WT). The unigram model assumes independence between each word, such
that the probability of observing a certain document (w1, . . . ,wT) is given by:

P (W1 = w1, . . . ,WT = wT) =
T
∏
t=1

P (Wt = wt). (12.1)

Let β ∈ [0, 1]W denote (βw)w := (P (Wt = w))w, the probability that the word takes
the value w. By definition, the sum of the elements of β is 1, since this vector defines
a probability distribution on the vocabulary. The information contained in the data
can be summarized by the row of the term-document matrix where we drop the
document subscript, denoted C = (Cw)w∈ , and the likelihood factorized as:

P (β|C) = ∏
w∈

βCw
w .

Considering the log-likelihood and incorporating the constraints that β defines a
probability distribution, the Lagrangian is given by:

∑
w∈

Cw log(βw) + λ (1 – ∑
w∈

βw),

where λ is the Lagrange multiplier. The first order conditions imply: βw =Cw/λ,
λ= ∑w∈ Cw =T, and therefore β̂w =Cw/T= fw. Themaximum likelihood estimator
associated with this model is simply the word frequency.

However, this model is simplistic, and a first way to relax the independence
assumption is to assume conditional independence with respect to the topic of the
document.

12.4.2 Unigrammodeling with topic mixture

This next model adds a layer of complexity: the probability of a word appearing
depends on the category to which the document belongs, or equivalently, on the
topic of the document. This category is assumed to be chosen from an arbitrary
number K of unobserved and mutually exclusive categories. This is amixture model
with hidden variable, where the hidden variable is the category.
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Each document in the corpus is assumed to belong to one and only one unob-
served latent category, denoted by Z ∈ {1, . . . ,K}. Consider the matrix parameter
that column-wise stacks the probability vector of word appearance under each cat-
egory β = (β1, . . . , βK) such that βw, k := P (Wt = w|Z = k) is the probability that the
t-th word, Wt, takes the value w given that the document belongs to category k. Let
ρ = (P (Z = k))k=1, . . . ,K the vector of marginal probabilities of category membership.
Using Equation (12.1), we have:

P (W1 = w1, . . . ,WT = wT|β, ρ)

=
K
∑
k=1

P (Z = k|β, ρ)
T
∏
t=1

P (Wt = wt|Z = k, β, ρ),

and therefore, since the observations can also be summarized by the document-term
matrix, the likelihood function is written:

P (β, ρ|C) =
K
∑
k=1

ρk ∏
w∈

βCw
w, k.

Consequently, for a corpus ofD documents indexed by the mute variable j, we have
the following log-likelihood:

D
∑
j=1

log (
K
∑
k=1

ρk ∏
w∈

βCj,w
w,k ) + λ1 (1 –

K
∑
k=1

ρk)
  

1 constraint

+
K
∑
k=1

λk+1 (1 – ∑
w∈

βw, k)
  

K constraints

.

Unobservable latent categories make the likelihood intractable. The expectation-
maximization (EM) algorithm is particularly well suited for the estimation of this
type of models.

Remark 12.2 Estimation via the EMalgorithm

The basic idea of the EM algorithm is that the log-likelihood function would be simplified if
the latent variables {Zj}j=1, . . . ,D were observed:

ℓfull (β, ρ|||C, {Zj}j=1, . . . ,D)

=
D
∑
j=1

K
∑
k=1

1{Zj = k} (log (ρk) + ∑
w∈

Cj,w log(βw,k)) .

Continued
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Remark 12.2 Continued

Thus, when integrating over {Zj}j=1, . . . ,D, the likelihood can be decomposed as:

ℓ (β, ρ|C)

= E{Zj}j=1, . . . ,D|C,β,ρ [ℓfull (β, ρ
|||C, {Zj}j=1, . . . ,D)]

=
D
∑
j=1

K
∑
k=1

EZj|Cj ,β,ρ [1{Zj = k}] (log (ρk) + ∑
w∈

Cj,w log(βw,k)) . (12.2)

Then, the EM algorithm proceeds iteratively starting from initial values (β(0), ρ(0)), and
thenmoves to the next step via:

(β(t+1), ρ(t+1)) (12.3)

= argmax
β, ρ

{E{Zj}j=1, . . . ,D|C,β(t),ρ(t) [ℓfull (β, ρ
|||C, {Zj}j=1, . . . ,D)]}

It is guaranteed that each iteration increases the log-likelihood.

1. (E step) Compute the expectation (12.3) using (12.2) and

EZj|Cj ,β,ρ [1{Zj = k}]

= P (Zj = k|C, β, ρ)
∝ P (C|Zj = k, β, ρ)P (Zj = k|β, ρ) (Bayes rule)

= (∏
w∈

βCj,ww,k ) ρk.

2. (Mstep) The first-order conditions for the following objective function:

D
∑
j=1

K
∑
k=1

(∏
w∈

(β(t)
w,k)

Cj,w) ρ(t)
k (log (ρk) + ∑

w∈
Cj,w log(βw,k))

+ λ1 (1 – ∑
w∈

βw) +
K
∑
k=1

λk+1 (1 – ∑
w∈

βw,k) ,

give the expressions for β(t+1)
w, k , ρ(t+1)

k in terms ofCj,w and

Ĉ(t)
j,k := ( ∏

w∈(β(t)
w,k)

Cj,w) ρ(t)
k .
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The resulting topics can be interpreted ex-post by looking at words with higher or
lower relative frequencies conditionally on each topic. It is also possible to compute
the membership probability of a document in order to cluster the corpus.

12.4.3 Latent Dirichlet allocation

An extra relaxation of the independence assumption is to allow a document to be a
mixture of several categories or “topics” that are not observed.Words are assumed to
be drawn independently and conditionally on the topic. This is the principle of latent
Dirichlet allocation (LDA) and its variants (e.g., correlated topic models). LDA is a
mixed-membershipmodel inwhich documents are represented as randommixtures
over latent topics, each topic being characterized by a distribution over words. Each
document has its own probability distribution over topics.

Remark 12.3 TheDirichlet probability distribution

Let us define the Dirichlet distribution, a key tool in this section. In Bayesian statistics, the
posterior distribution, P (β|C), is given by:

P (β|C) = P (C|β)P (β)
P (C) ,

where P (C|β) is the likelihood and P (β) is the prior distribution, determined by the
researcher. A particularly useful prior distribution is a conjugate prior, which leads to a
posterior distribution of the same family.

Here, we have amultinomial likelihood function for the word frequency in a documentC,
given by:

P (C|β) = Γ (∑w∈ Cw + 1)
∏w∈ Γ (Cw + 1) ∏w∈

βCww ,

where Γ is the Gamma function. The Dirichlet distribution, parameterized by α = (αw)w∈ ,
is defined on the (| | – 1)-dimensional simplex (i.e., α ∈ R| |

+ , ∑w∈ αw = 1), and is
characterized by:

P (β|α) = ∏w∈ Γ(αw)
Γ (∑w∈ αw)

∏
w∈

βαw–1
w .

Thus, the posterior distribution is:

P (β|C) ∝ ∏
w∈

βCw+αw–1
w ,

Continued
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Remark 12.3 Continued

which is also a Dirichlet distribution of parameters (C1 + α1, . . . ,CW + αW). The mean and
variance of a Dirichlet(α) distribution are given by:

E [βw] =
αv
α

, V [βw] =
αw(α – αw)
α2(α + 1)

,

where α = ∑w∈ αw. Therefore, we have:

E [βw|C] =
Cw + αw
T + α

.

Compared to the maximum likelihood estimator β̂w =Cw/T, we can see that the parame-
ter α tends to smooth cases with very low or zero frequencyCw.

Let’s describe the LDAmodels fromBlei et al. (2003) and Blei and Lafferty (2009).
The generative process for document j composed of Twords abides by the following
assumptions:

1. T ~ Poisson(ξ);
2. ρ ~ Dirichlet(α), ρ, α ∈ R| |

+ ;
3. For each of the T words in the sequence (W1, . . . ,WT):

(a) Choose a topic Zt ~ Multinomial(ρ);
(b) Choose a word wt by drawing according to P(Wt = wt|Zt, β), according to

a multinomial distribution conditioned on the topic Zt and the parameter
matrix β of dimension | | × K.

Thus, conditionally on the total number of words used T = ∑w∈ Cw, the column
of frequencies C (i.e., the row of the document-term matrix corresponding to this
document) follows a multinomial distribution:

C ~ Multinomial(ρ1β·,1 + … + ρKβ·,K,T). (12.4)

For document j, we have:

P(Wt = w|ρ j) =
K
∑
k=1

P(Wt = w|Zt = k)Pj(Zt = k) =
K
∑
k=1

βw,kρ
j
k,

thus justifying the distribution (12.4). Our aim is to estimate the parameters
β and α. The data generating process gives the followingmatrix factorizations, which
allow for the interpretation of documents and topics:
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C
documents × words (D×|W|)

∝ (
ρ1′

:
ρD′

)

  
documents × topics (D×K)

× β′
topics × words (K×|W|)

.

For a document j, given the parameters ρ j and α, the joint distribution of amixture
of topics, a set of K topics, and a sequence of T words is given by:

P (ρ j, {wt, zt}t=1, . . . ,T |α, ρ j) = P (ρ j|α)
T
∏
t=1

P (Zt = zt|ρ j)P (Wt = wt|Zt, ρ j) ,

where P (Zt = zt|ρ j) = ρ j
k for k such that Zt = k. By integrating with respect to the

topic distribution and summing over all possible values of Zt, we obtain:

P (W1 = w1, . . . ,WT = wT|α, ρ j)

= ∫P (ρ j|α) (
T
∏
t=1

∑
Zt

P (zt|ρ j)P (Wt = wt|Zt, ρ j)) dρ j.

However, maximizing such likelihood is numerically complex, due to the products
between ρ and β. Common techniques for estimating these models involve Gibbs
sampling and variational EM algorithms. The variational EM algorithm approxi-
mates the true posterior distribution with a simpler functional form that depends
on a set of variational parameters. Then, it proceeds by optimizing the approximate
posterior distribution with respect to the variational parameters so that it is “close”
to the true posterior distribution.

Zhao et al. (2015) propose an approach to select the number of latent topics K
in an LDA model. The idea is to select the number of topics such that the marginal
gain in terms of perplexity (a concept from information theory similar to entropy)
slows down.

12.5 Empirical applications

12.5.1 Monetary policy transparency

Hansen et al. (2017) study the impact of increased transparency in the decision-
making process of central banks using an LDA model. They exploit the meetings
of the US Federal Reserve Open Market Committee (FOMC), during which, eight
times a year, the 19 members formulate the US monetary policy. The US Fed-
eral Reserve publishes full minutes of FOMC meetings, which can be analyzed to
identify the topics of discussion.
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Their research question is as follows: what are the effects of greater transparency
towards citizens on internal deliberations? They use a natural experiment: FOMC
meetings have been recorded on tape since the 1970s. However, initially, committee
members believed that these tapes were subsequently erased. Then, in 1993, under
pressure from the US Senate, Alan Greenspan discovered and revealed that, in fact,
the tapes had been transcribed and kept in archives since the beginning.

After processing theminutes, the authors obtainW = 8, 615 unique tokens, collec-
tively used 2, 715, 586 times, inD = 46, 169 documents. They consider LDA models
where K = 50 and K = 70. As a model validity test, the authors conduct a correlation
study between the intensity of certain estimated topics and the occurrence of exter-
nal events. For example, they examine the evolution of the number of words used
associated with two pro-cyclical topics, defined by a decrease in their occurrence
before each recession. In particular, they use the index developed by Baker et al.
(2016) to measure the perception of economic policy uncertainty and expiring fis-
cal measures by economic agents. Topics estimated by the LDA can be represented
and classified based on their correlation with this index, as well as the most repre-
sentative associated words of these topics (see the example on articles from theWall
Street Journal in Section 11.1).

Finally, regarding the effect of transparency on deliberations, the authors examine
in particular the herding (or anti-herding) behavior of FOMC members: they can
choose to conform (or publicly deviate) from the chairman’s opinion and choose
to address a similar topic (or change the topic). For this purpose, they estimate the
following linear model:

Yit = αi + Dt × τ + X ′
t β + εit,

where αi is a topic fixed-effectsDt is a binary variable representing the transparency
regime and Xt are control variables of a macroeconomic nature. Yit represents
various measures of central bank communication based on topics, particularly a
Herfindahl concentration index computed on the distribution of policy topics, the
percentage of time spent on factual topics, the number of words from technical
jargon, as well as the similarity between the topic distribution of a speaker and
the FOMC average. Using a measure of similarity between the topics addressed by
the chairman and the other members after and before 1993, they find significant
evidence of conformist behavior of committee members relative to the chairman.

12.5.2 Political division

Gentzkow et al. (2019) use the US Congressional Record from the 43rd Congress
to the 114th Congress to estimate the average ideological division in the Congress
using a multinomial logit model.

The features representing session t are measured in a matrix Ct where the rows
correspond to speakers and the columns to selected distinct bigrams. Therefore, an
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element Cijt gives the number of times speaker i uttered phrase j in session t. They
assume that, for speaker i from party P:

Cit ~ Multinomial (mit, qPt (Xit)) ,

and qPt (Xit) ∈]0, 1[W denote the vector of choice probabilities defined by:

qP(i)jt (Xit) =
exp(αjt + X ′

itγjt + φjt1i∈Rt)
∑k exp(αkt + X′itγkt + φkt1i∈Rt)

,

αjt is a scalar parameter capturing the baseline popularity of expression j in session
t, γjt is a vector of dimension K capturing the effect of features Xit on the propensity
to use expression j in session t, φjt is a scalar parameter capturing the effect of party
affiliation on the propensity to use expression j in session t, Rt = {i : P(i) = R,
mit > 0}, and Dt = {i : P(i) = D,mit > 0}. These variables measure the ideological
content of the speech as the divergence between qRt (Xit) and qDt (Xit) through

πt(Xit) = 1
2q

R
t (Xit)′ρt(Xit) +

1
2q

D
t (Xit)′(1 – ρt(Xit)),

where

ρjt(Xit) =
qRjt(Xit)

qRjt(Xit) + qDjt (Xit)
,

is the posterior belief that an observer with a neutral a priori would attribute to
a speaker if they choose expression j in session t and have characteristics Xit. The
estimation of the structural parameters is performed using a penalized estimator
proposed by Taddy (2013). The resulting index shows that the average ideological
division between Democrats and Republicans has significantly increased since the
1990s, compared to the evolution between 1870 and 1990, in the sense that they
now speak different languages to a much larger extent than before.

Finally, Gentzkow and Shapiro (2010) estimate a structural demand model for
newspapers using a new measure of media bias, which measures the similarity of a
media’s language to that of a Republican or Democratic member of Congress.

12.6 Summary

Key concepts

Natural language processing (NLP), word n-gram, character n-gram, token, tokenization,
document, corpus, document-term matrix, stop-word, stemming, de-suffixing, lemmati-
zation, regular expression, mutual information, TF-IDF, text regression, cosine distance,
unigrammodel, EM algorithm, latent Dirichlet allocation (LDA).
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Additional references

A very good general reference on natural language processing is Jurafsky and Martin (2019),
available online.

In the economic literature, Bholat et al. (2015), Gentzkow et al. (2019), Ash and Hansen
(2022), Stephen Hansenʼs conferences and lecture notes (sekhansen.github.io/teaching.
html) and Elliott Ashʼs (elliottash.com/text_course) are excellent starting points.

Questions

1. Why does text data processing often require manipulating high-dimensional vectors?
2. Provide two concrete examples where the use of character n-grams is advantageous

compared to using word n-grams only.
3. In your opinion, what are the advantages and limitations of modeling language

through latent variables?
4. In early 2021, GameStopʼs soaring stock price made headlines, highlighting the

activity of users on the Reddit forum r/WallStreetBets, a group of individual
investors looking for stock tips. Suppose we have, on one hand, daily time series of
stock prices for a given basket of stocks (observation unit: day × financial asset), and
on the other hand, a collection of messages posted on this forum (observation unit:
timestampedmessage). Propose a detailed empirical strategy to estimate the impact
of this activity on the stock prices of these assets. You will start from explaining how
to construct the relevant database and go up to describing the model you would like
to estimate.

http://sekhansen.github.io/teaching.html
http://sekhansen.github.io/teaching.html
http://elliottash.com/text_course


Chapter 13
Wordembeddings

This chapter deals with the mathematical representation of words through vectors
or embeddings, which are the basis of modern language models. This is not just
any type of vector representation, but a distributed representation that serves sev-
eral purposes. First, it reduces storage costs by distributing n objects across p ≪ n
axes, instead of using n axes for n words (Section 13.1). Second, it helps tackle the
curse of dimensionality, which makes it difficult to estimate the joint probability
of word sequences (Bengio et al., 2000). Finally, it produces a vector space in which
mathematical relationships have linguisticmeaning (i.e., twowords used in a similar
context will be close to one another in this space).

This chapter starts by discussing the limits of the one-hot representation (Section
13.1) and continues with Section 13.2 that presents traditional approaches based
on the factorization of the co-occurrence matrix. Section 13.3 constitutes the core
of this chapter: it details the models that underlie the word embeddings commonly
used today. Section 13.4 provides some guidelines on how to use embeddings for
a classification task. Finally, we will explore how this idea of embeddings can be
applied to other types of unstructured data (Section 13.5). This chapter relies on
concepts related to neural networks, presented in Section 2.8.

In this chapter, a word is denoted by the symbol w, while a set of words (the
vocabulary) is denoted by  . xw, xi, or simply x when context is devoid of ambi-
guity denotes the vector representation of word w ∈  , which occupies position i
in the vocabulary. This is a parameter vector that we seek to learn (estimate). Fur-
thermore, a document consisting of T words is represented by a word sequence of
length T, denoted by (w1, . . . ,wT). From a statistical viewpoint, a document is there-
fore considered as a sequence of T discrete random variables, (W1, . . . ,WT), each
taking values in  , of which (w1, . . . ,wT) is a realization. Notice also that we take
these word sequences as given and abstract from the data-cleaning steps described
in Chapter 12. In this sense, while we use the term “word” in this chapter, it actually
refers to a token.

13.1 Limitations of the one-hot representation

So far, we have considered a one-hot representation of words, also called one-hot
encoding. That is, for a vocabulary, i.e., a set of words  of size W, each word is
represented by a sparse vector of size W with one element equal to one and the rest
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of the elements equal to zero. For the word occupying position i ∈ {1, . . . ,W} in the
vocabulary, we therefore have the following representation:

x = (xj)j=1,. . . ,W = { 1 if j = i,
0 otherwise.

First, this representation is inefficient since representing a document in this sys-
tem requires a vector of dimension W (see Section 12.2.3). Similarly, each addition
to the vocabulary results in an increase in the dimension of all vectors represent-
ing a document. In textual regressions of the type seen in Section 12.2.5, it quickly
creates problems of dimensionality as each added word represents an additional
coefficient to estimate. It is also limited by its inability to capture the semantic prox-
imity of words. Indeed, for any two distinct words, x1 and x2, we necessarily have
‖x1 – x2‖2 = √2. All words are at the same distance from each other. The notion of
distance, as measured by the Euclidean distance, when considering this represen-
tation, therefore does not carry any meaning. And this is not a problem caused by
this distance, because if we consider the cosine similarity, we have the same result:
cossim(x1, x2) = 0. This representation is therefore unable to account for the seman-
tic proximity between words: there is no mathematical translation of synonym,
antonym, lexical field, etc.

Finally, adequate language modeling – which often requires learning the joint
probability of any sequence of words – without using amore sophisticated approach
than one-hot encoding, suffers from the curse of dimensionality (Bengio et al.,
2000).

13.2 Factorizationof the co-occurrencematrix

Modern language models are based on the observation made by English linguist
John Rupert Firth (1890–1960) that “you shall know aword by the company it keeps.”
Therefore, the construction of word vectors relies on the idea that similar words,
such as synonyms or words fulfilling the same function, are used in similar contexts.
Consequently, similar words are often accompanied, in their usage, by a specific
context defined as a shared subset of words. Analyzing these contexts enables us to
generate lexical embeddings, which serve as mathematical representations of these
words. In this vein, many traditional approaches relied on word counting, notably
through the co-occurrence matrix, which we will present here.

13.2.1 Representation using the co-occurrencematrix

Let  be a vocabulary of W words, and let M be an integer, which we will call the
window size. The context of a word in a sentence is defined as the set of 2M words
consisting of the union of the M preceding words and the M following words. The
context is truncated to avoid exceeding the
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of the first word in a sentence consists only of the M following words. A value of 4
or 5 for M is often used in practice. The co-occurrence matrix F is a square matrix
of dimension W such that the element at the intersection of the i-th row and the
j-th column counts the number of times the word wj appears in the context of the
word wi. Thus, we are dealing with a high-dimensional sparse matrix, since a priori
a given word is only used in a small number of contexts. We can still define a slightly
more advanced representation of a word wi than the one-hot representation seen in
the previous section, simply by taking the row xi = (Fi,1, . . . ,Fi,W) that corresponds
to it in the co-occurrence matrix. In this case, for two words that share exactly the
same context, we will have ‖x1 – x2‖2 = 0 or x′1x2/ ‖x1‖2 ‖x2‖2 = 1.

13.2.2 Dimension reduction through singular value
decomposition

However, the raw vector representation obtained from the co-occurrence matrix
still suffers from a dimensionality problem, as it has a size of W. We can then per-
form a dimension reduction step in order to obtain vectors of smaller size using
the truncated singular value decomposition (SVD). This method aims to construct
the best possible approximation of the initial vectors in a lower-dimensional space,
by maximizing the amount of variation present in the initial data captured by this
approximation (or equivalently: minimizing the noise from the initial data). From
Section 2.2, we can set all but the p largest singular values of F to zero so as to obtain
F̂ = ∑p

j=1 sjujv′j . Denote U the matrix of dimension W × p which j-th column is the
vector uj. We can then take the i-th row of the matrix U as the representation of
the word wi: xi = (Ui,1, . . . ,Ui,p). This vector representation tends to exaggerate the
closeness of words in the original representation (Fi,1, . . . ,Fi,W) by making similar
words even more similar and dissimilar words more distinct.

This new representation obtained from the truncated SVD is what is called a
distributed representation in computer science, as there is no longer a need for
W dimensions to represent W words as in the one-hot encoding system. On the
contrary, the W words are represented through their distribution on the p axes.

13.3 word2vec and self-supervised learning

13.3.1 Vector arithmetic

Before diving into how to build word embeddings using neural networks, let’s take
the output vectors of a popular language model, fastText (Mikolov et al., 2018),
and illustrate the vector arithmetic obtained by these models. We will see that they
lead to representations where word vectors are arranged based on their respective
relationships and where vector arithmetic carries meaning. One famous application
of this property is the parallelogrammodel for analogical reasoning (Rumelhart and
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Abrahamson, 1973). Analogical reasoning consists in answering the question: what
is the equivalent, for c, of b for a? For example, what is the equivalent, for child, of
king for man? And in general, in properly trained word vector models, the nearest
neighbor of the vector xking + xchild – xman is xprince, which is the correct answer.

Table 13.1 displays the results from a simple nearest-neighbor search of the clos-
est capital among a pre-defined list for a few countries using cosine similarity. The
model is able to find the correct answer. Figure 13.1 illustrates a two-dimensional

Table 13.1 Finding capitals for a given country.

France Paris (.69) Brussels (.52)

Spain Madrid (.73) Lisbon (.51)
Germany Berlin (.70) Vienna (.56)
Italy Rome (.66) Vienna (.45)
Portugal Lisbon (.73) Madrid (.54)
Denmark Copenhagen (.73) Stockholm (.59)
Austria Vienna (.72) Berlin (.46)
Belgium Brussels (.68) Paris (.47)
Sweden Stockholm (.75) Copenhagen (.57)
China Beijing (.77) Moscow (.42)
Russia Moscow (.76) Beijing (.44)

Note: Closest and second closest neighbors of a given country within a
set of capitals. Cosine similarity in parentheses. Model is fastText
(Mikolov et al., 2018).
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Figure 13.1 Two-dimensional vector representations of countries and their capitals.
Note: vectors derived from the fastTextmodel in English Mikolov et al. (2018). Graph inspired by Mikolov
et al. (2013).
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queen girl

princess
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aunt
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king

boy

man
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Figure 13.2 Vector representations of feminine andmasculine word equivalents.
Note: vectors derived from the fastTextmodel in English Mikolov et al. (2018), with dimension p = 300, and
projected on the “masculine” and “feminine” vectors.

representation of vectors for some countries and their capitals, using pre-trained
vectors from the fastTextmodel for the English language.

First, it can be observed that the segments connecting the vector representation of
a country to that of its capital tend to be parallel. One might imagine reconstructing
the relationship between a country and its capital by taking the average of the dif-
ference between the vectors representing the country and its capital. It would then
suffice to add this vector to that of a country and perform a nearest neighbor search
in order to potentially find its capital. It can also be observed that the arrangement
of the (country, capital) pairs in this space tends to partially reflect their geograph-
ical proximity. These two observations are even more remarkable considering that
these vectors have been obtained without any form of supervision, that is, without
the model having prior knowledge of the relationship between Paris and France.

Similarly, Figure 13.2 illustrates the relationship that exists, in thismodel, between
a feminine word and its masculine equivalent.

13.3.2 Self-supervised learning

The three most popular word vector models are word2vecMikolov et al. (2013),
GloVe Pennington et al. (2014), and fastTextMikolov et al. (2018). The vector
outputs of such models are able to represent words in a vector space of dimension
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p ≪ W, where the respective locations of words capture the meaning of their
relationships as we have seen in the previous section.

Rather than compressing descriptive statistics as what was done through a trun-
cated SVD of the co-occurence matrix, these specific word vector models allow for
more sophisticated representations. They are trained using self-supervised learning
(SSL). SSL tasks are auxiliary tasks specifically created to make a model learn its
parameters, although the task in itself is not of primary importance. They convert
an unsupervised problem into a supervised one by defining a specific loss. SSL is a
more general concept than what we will present in this section and although we will
also use SSL task in Chapter 14, the reader is referred to Balestriero et al. (2023) for
an overview.

Two SSL tasks are used to learn word embeddings in the original word2vec
article of Mikolov et al. (2013). They also require the definition of a context as a
window of fixed size M around the word. Given a document with T tokens and a
dictionary of lengthW, eachwordwi in the dictionary is associatedwith two embed-
dings, both of dimension p. The first is the word vector xi when it is the central
word and the second is the context vector yi when it is part of a context of a cen-
tral word. The learning tasks aim to estimate both these vectors. The first learning
strategy is called the skip-gram model and seeks to predict the context of a central
word given its occurrence. The second learning strategy is called continuous bag
of words (CBOW) and aims to predict the central word from its context. In both
these strategies, the scalar product y′ixj between two distinct word vectors plays a
key role: the larger this value, themore likely it is that word i appears within the con-
text of word j. Notice that the scalar product appears at the numerator of the cosine
similarity.

13.3.3 Skip-gram

The objective is to learn the vector representations of words xi that efficiently predict
thewords in a neighboringwindowusing amaximum-likelihood approach (Section
2.4). Start from a sequence of T consecutive words and consider a sub-sequence of
2M + 1 consecutive words:

wt–M, . . . ,wt–1,wt,wt+1, . . . ,wt+M,

where wt is called the central word or target word. We aim to learn the word vectors
{xi}i=1,. . . ,W and the context vectors {yi}i=1,. . . ,W. To achieve this, we define a sequence
of 2M + 1 random variables, each taking a value in  :

Wt–M, . . . ,Wt–1,Wt,Wt+1, . . . ,Wt+M.

Assume that the probability of observing the word wt+i in the context of the target
wt is given by a softmax which allows to convert the scalar product y′t+ixt encoding
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the similarity between two words into a probability:

exp(y′t+ixt)
∑W

k=1 exp (y′kxt)
.

To predict the whole context, assume that the joint probability is given by the
product of the marginal probabilities, which arises from an implicit assumption of
exchangeability between the context elements, Wt–M, . . . ,Wt–1,Wt+1, . . . ,Wt+M. The
words order is not taken into account, which is a strong assumption that will be
challenged in Chapter 14. Still, we can write the probability that the context is
wt–M, . . . ,wt–1,wt+1, . . . ,wt+M given the target word wt as:

P({Wt+i = wt+i}–M≤i≤M,i≠0 |Wt = wt) = ∏
–M≤i≤M,j≠0

exp(y′t+ixt)
∑W

k=1 exp (y′kxt)
.

The log-likelihood computed over the entire sequence is therefore:

1
T

T
∑
t=1

∑
–M≤i≤M,i≠0

y′t+ixt – log (
W
∑
k=1

exp (y′kxt)), (13.1)

and is to be maximized over both the target and context vectors. This amounts to
maximizing the probability that a given word, among all other words in the vocab-
ulary, appears in the context of the target word. In a nutshell, the skip-gram model
seeks to maximize the similarity of word representations that occur in the same
context.

13.3.4 Continuous bag of words

The continuous bag of words (CBOW) is also a model that aims to learn represen-
tation of words and their context. However, this time the problem is inverted, as
the task consists of predicting the target word based on its context, by averaging the
vectors of the words appearing in a fixed-size adjacent window. More precisely, we
define ūt := 1

2M ∑–M≤i≤M,j≠0 yt+i as the average context vector. We can then formulate
the probability of observing the target word given the context as a softmax:

P(Wt = wt| {Wt+i = wt+i}–M≤i≤M,i≠0) = exp(x′t ūt)
∑W

k=1 exp (x′kūt)
.

This leads to the following log-likelihood for the entire sequence:

1
T

T
∑
t=1

x′t ūt – log (
W
∑
k=1

exp (x′kūt)). (13.2)
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Wenote that this representation also implies an assumption ofword exchangeability,
as the simple average does not take into account the order of word occurrence.

13.3.5 Computational considerations

These two models can be interpreted from the perspective of neural networks
(Section 2.8), since each word corresponds to two layers of embeddings depending
on whether the word is central or appears in the context, followed by simple opera-
tions (average, dot product, softmax, etc.) leading to the loss function. Therefore, it
is possible to optimize it via stochastic gradient descent. However, it is worth noting
that the denominator at each probability level is a sum over the size of the vocabu-
lary, W. For example, in Equation (13.2), we have ∑W

k=1 exp (x′kūt). This makes it a
very expensive object to compute – not to mention its gradient – considering that a
vocabulary generally consists of around 105 to 107 terms.

A first idea is to remove certain words from the vocabulary based on their fre-
quency of occurrence, thus performing undersampling. Indeed, words such as
articles (the, a, etc.) or prepositions (in, where, about etc.) do not carry very impor-
tant informational content. Moreover, they appear in the context of almost every
word. It is known that the frequency of word usage follows a power law, more pre-
cisely the Zipf ’s law,P(x) = x–(1+1/s) where s > 0 and x is the frequency.Mikolov et al.
(2013) therefore suggest removing certain words during the training phase, with the
following probability for each word max(0, 1 – √δ/freq(w)), with δ ∈ [10–5, 10–3].
This allows for significant undersampling of words with a frequency greater than δ.

One can also perform what is called negative sampling to reduce the computa-
tion time of the denominator. This strategy, although based on the skip-grammodel,
takes a different view of the problem to arrive at a simpler objective function. Instead
of computing the probability over all possibilities, the problem is recasted as a clas-
sification problem by seeking to discriminate pairs (x, y) consisting of a target word
and a context word. The idea is that for each pair observed in the training set, we
draw a number B of pairs that never appear in the data. Let D be the binary ran-
dom variable taking the value 1 if the pair (x, y) appears in the training data, and
0 otherwise. We seek to optimize the value of the vectors in order to maximize the
probability P[D = 1] for the pairs appearing in the training data, and to minimize it
for the others (i.e., seek to maximize P[D = 0] for the other B pairs). Assuming the
following sigmoid form:

P [D = 1] = exp(x′y)
1 + exp(x′y) .

We then get, for each sequence of length T, the following objective function that we
would like to maximize:

1
T

T
∏
t=1

[ exp(y′0xt)
1 + exp(y′0xt)

B
∏
b=1

1
1 + exp(y′ x )],
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where y0 is a word appearing in the context of xt, and (yb)b=1,. . . ,B are randomly drawn
words that do not appear in its context. To specify this function in the same format
as before, by taking the log, we seek to minimize the negative log-likelihood:

1
T

T
∑
t=1
[log (1 + exp(–y′0xt)) +

B
∑
b=1

log (1 + exp(y′bxt))].

We can then observe that this objective function is much simpler to compute,
compared to the function in Equation (13.1), as there is no longer a need to com-
pute a sum of W terms in the denominator. It should be noted that the same
trick can be used for the model (13.2), simply by replacing y with ū. It is rec-
ommended to choose a value of B between 5 and 20 for a small dataset, while
a value between 2 and 5 may be sufficient for a very rich dataset. Which distri-
bution should be chosen for the random drawing of context words in order to
create “fake” word pairs? Mikolov et al. (2013) propose sampling words with a
probability proportional to their empirical frequency of appearance in the train-
ing corpus, raised to the power of 3/4. This power allows to enhance the frequency
of very infrequent terms without excessively altering the frequency of very frequent
terms.

Finally, note that we can make the simplifying assumption that yi = xi for all
i ∈  , which reduces the number of parameters to be estimated by half.

13.3.6 Choice of hyperparameters

Learning word embeddings requires making several prior choices, most notably the
dimension of the latent space p and the size of the context windowM.

Regarding the window size M, a larger window leads to training the model on
more examples and may result in increased accuracy, but at the cost of longer train-
ing time. The same goes for the dimension p of the embedding space: the larger
it is, the more likely it is to capture subtle relationships, but training time also
increases. Generally, the value of p is chosen to be sufficiently small for dimen-
sionality reduction to be significant, but still large enough as to capture subtitle
relationships between words. There is a middle ground to be determined depend-
ing on the application. Most downloadable vectors found online have dimensions
proportional to a hundred.

Rodriguez and Spirling (2022) explore these questions and suggest choosing a
dimension p greater than 100 and a context window size greater than or equal to
5, while acknowledging that beyond p > 300 and M > 6, the improvement is only
marginal. Moreover, the authors provide avenues for evaluating the performance
of these models, such as using the embeddings derived from the model for a super-
vised task. Antoniak andMimno (2018), on the other hand, show that, especially for
moderate-sized corpora, cosine similarity between embeddings is not always stable
across models. They suggest adopting a
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in the corpus are sampled with replacement to train a model, and then the models
trained on each sample are averaged to form a final model.

Another question is also whether to start the learning from scratch to obtain
word embeddings that are very corpus-specific, or to fine-tuned pre-existing vec-
tors to make them seem more adapted to a new corpus. We explore the pros and
cons of each option in Chapter 14. Finally, like any neural network, one must also
choose the learning rate, batch size, etc.We further develop these practical aspects in
Section 2.8.

13.3.7 Empirical applications

Kozlowski et al. (2019) construct a lexical embedding model to describe the gen-
der and social class dimensions of certain symbols or cultural activities. Using
representations in a low-dimensional space constructed from books published in
the United States between 1900 and 1999, they perform a longitudinal analysis
of the co-evolution of gender and class associations in the United States dur-
ing the twentieth century. Here, the gender representation is constructed as the
average of the differences between the embeddings of the pairs (man, woman),
(men, women), (he, she), (him, her), (male, female), (boy, girl), etc. Similarly,
the class representation is constructed by calculating the average of the differ-
ences between the embeddings of the word pairs (rich, poor), (affluence, poverty),
(expensive, inexpensive), (luxury, cheap), etc. The authors can then project the lex-
ical embedding corresponding to a particular activity onto these two axes (gender
and social class) and see how this activity is positioned in this language repre-
sentation. Based on the figures presented in Kozlowski et al. (2019), it can be
observed that softball and volleyball are very feminine activities, in contrast to
baseball and boxing. In between, football (soccer) appears to be relatively neutral.
The remarkable aspect of these results is that, once again, the model is learned
completely unsupervised: the captured phenomena are solely based on published
works.

To measure the sexist bias of American judges, Ash et al. (2021) construct lex-
ical embeddings for each judge based on their opinions, and compute the cosine
similarity between the vector representing the gender dimension and the vec-
tor representing the “career vs. family” dimension. They show that judges with
a higher cosine similarity between these two vectors, indicating language that
reflects a closer alignment with traditional male and female roles, also make deci-
sions against women more regularly and show less consideration for their female
colleagues. Similarly, Gennaro and Ash (2021) define embeddings for the emo-
tional and rational dimensions of language based on averaging word lists associated
with these concepts, and then estimate a propensity for emotional or rational
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appeals in political speeches to study their prevalence over time and with different
speakers.

From fastText vectors it is possible to compute a gender axis and a social class
axis, based on the words in Table 13.2. Words representing a specific activity or
object are projected onto these two axes, as shown in Figure 13.3. Can you guess
what each of the two axes represents? Overall the intuition seems respected.

Table 13.2 Words used to define the axes

Gender Social class

man – woman rich – poor
men – women wealth – poverty
boy – girl luxury – deprivation
boys – girls expensive – cheap
he – she abundance – need
him – her opulence – destitution
masculine – feminine prosperity – misery
male – female profusion – lack
sister – brother
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Figure 13.3 Projections of some terms along the gender and social class axes.
Note: Vectors from the fastTextmodel in English (Mikolov et al., 2018) with dimension p = 300 are
projected onto axes defined by the words in Table 13.2.
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13.4 Classificationusing text embeddings

13.4.1 Potential applications

Classification tasks using textual data are ubiquitous. Theymay be of interest in their
own right, but in the context of economic studies, they often constitute a prelimi-
nary data processing task, aiming to summarize information or classify documents,
generally with the idea of creating new variables to be added to a regression model.
The concepts seen previously such as lexical embeddings, in combination with the
power of neural networks, offer a very effective tool for addressing this type of prob-
lem. It is generally easier to think of classification problems in this context, although
this section also applies to “regression” problems (predicting a value rather than a
category).

One standard classification task with textual data is known as sentiment analysis.
Its aim is to classify a document as reflecting a positive or negative sentiment. A
simple example is the categorization of a tweet as reflecting a positive or negative
opinion on the stock price of a company, in order to automatically take a position in
the market based on the overall sentiment expressed by users of this social network
(e.g., Sul et al., 2016).

One may also want to use subjective measures of the quality of a good or a service
in order tomodel demandby consumers. Indeed, traditionally in demand equations,
it is known that price is an endogenous variable, particularly because certain char-
acteristics such as brand image or “vibe” are difficult to objectively measure (see
Chapter 6). Estimating these equations using OLS on tabular data suffers from an
omitted variable bias. However, a certain amount of unstructured data such as text
(e.g., product descriptions, user comments) or images contain important informa-
tion taken into account in the consumer’s purchasing decision. Imagine that we
want to measure the factors influencing demand for restaurants. We can of course
include objective factors such as location, average price, or the number of items on
the menu. However, it is much more difficult to measure the quality of the dishes,
the politeness of the staff, or the originality of the decor. If, on the other hand, we
have customer reviews available on the internet, it is possible to use them to train
a model reflecting the sentiment of a comment by classifying it as “neutral,” “posi-
tive,” or “negative,” and then aggregate the sentiment of the comments at the level
of each establishment. Generally, two scenarios arise: either the textual reviews are
accompanied by a rating (in the form of stars, for example), in which case the data
set is labeled, or this is not the case, and the examples generally need to be manually
annotated to produce the necessary training data for the model. For example, Bana
(2022) trains a language model to predict the salary associated with a job offer from
its textual description. Note that for fairly standard tasks such as sentiment analysis,
pre-trained and performant tools are readily available, especially via the Hugging-
Face hub (huggingface.co/blog/sentiment-analysis-python). They generally do not
require, or require very few, labeled examples to function well.

http://huggingface.co/blog/sentiment-analysis-python
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Another example is automatic coding, which aims to classify items into categories.
It can be interesting to infer an individual’s profession or socio-professional category
from their declared occupation, code a firm’s activity within a specific classifica-
tion, or classify a product purchased in a supermarket according to a consumption
function classification such as the Classification of Individual Consumption by
Purpose (COICOP), used for the calculation of the consumer price index by
Eurostat.

Conceptually, the task is clear: for each observation described by a string of char-
acters, it is a matter of assigning it to one of the predefined categories. For this type
of problem, we assume the existence of a fixed number of categories in the target
classification, with this number generally ranging from two to several hundreds. We
will see a simple architecture to address this problem, while Chapter 14 gives the
tools to pursue a more complex approach.

13.4.2 Bag-of-word architecture

Suppose thatwe observe a string of arbitrary length sdescribing an observation (e.g.,
a profession, a product, a company, a newspaper article) that we want to classify into
K ≥ 2 classes. The classification task consists of constructing a function s↦ μclassif(s)
that takes a string s as input and outputs either an integer k ∈ {1, . . . ,K} designat-
ing one of the categories in the classification, or a K-dimensional vector giving the
probability of belonging to each of the K categories. Note that if we estimate the
probability of belonging to each of the K categories, it is easy to derive a classifier by
simply taking the category associatedwith the highest probability (the argmax). The
following paragraphs describe a very simple procedure for constructing such a func-
tion, similar to the one used by the supervised module in fastText (Bojanowski
et al., 2016). The next section will provide elements to make this function more
complex, potentially increasing its ability to capture fine relationships in the data
and capture the polysemy of certain words.

The first step is to transform the string s into appropriate numerical features, that
is, to apply the steps described in Section 12.2.1. Particularly for automatic coding
tasks where short string sequences are available, one may want to consider not only
wordn-grams as tokens but also charactern-grams. Indeed, this allows the algorithm
to be robust to typing or spelling mistakes, as two string sequences that only differ
by a few characters will share a high proportion of their character n-grams. Thismay
also be useful for capturing similarities between a term and its abbreviation. At the
end of this step, the string s is generally transformed into a list of indices, which, for
each token present in the string, gives the corresponding index in a token dictio-
nary. Suppose, for example, that the string s contains T tokens; we then obtain a list
[w1, . . . ,wT]. Note that different strings of characters will generally result in lists of
different lengths. For this tokenization step, there also exists data-driven tokenizers,
as we will describe in Chapter 14.
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The second step is to transform each index in this list into an arbitrary dimen-
sional lexical embedding p representing the tokens it refers to. Let [x1, . . . , xT] be
the list of embeddings corresponding to each token in the string. A simple solution
to represent the embedding of the complete string of characters is to aggregate the
embeddings of each token by taking their average:

X := 1
T

T
∑
t=1

xt.

However, one can also consider more complex aggregation systems, using weights
that could be learned. For example, Arora et al. (2017) suggest taking a weighted
average of the embeddings of the tokens contained in a sentence (where the word
frequency appears in the denominator), then subtracting the projection of this aver-
age onto the first eigenspace of the matrix whose columns are these averages for the
sentences in the training set. This amounts to subtracting the first mode (the first
principal component), which can be interpreted as the syntax of the language and
is common to all the textual sequences.

How to choose the embeddings to represent each token? Usually, two strategies,
which are not mutually exclusive, are distinguished: either pre-trained embeddings
available on the web can be used, through language models such as GloVe (Pen-
nington et al., 2014) or fastText (Bojanowski et al., 2016), or randomly initialized
vectors can be used and treated as trainable parameters. Note that when pre-trained
vectors are used, one can choose tomake them “trainable” during the learning phase
in order to make their representations better adapted to the final classification task.
Thus, at the end of this step, a string is represented by a set of p abstract explanatory
variables X that will be used to predict the category to which the string belongs.

Finally, the goal is to go from the representation X to a probability vector. For this
purpose, themost straightforward strategy is to pass through a softmax output layer,
such that the probability of belonging to category k is given by:

exp (X ′βk)
∑K

j=1 exp (X ′βj)
.

This way, the probabilities sum to one. This output layer is natural for problems in
which anobservation is associatedwith only one of the categories. In other tasks, one
may want to associate multiple categories to a given observation, a practice known
as multiple tagging. In this case, we prefer an output layer of the one-vs-all type,
giving the probability of belonging to category k as follows:

exp (X ′βk)
1 + exp (X ′βk)

.

In this case, we consider that the item is in each of the categories for which themem-
bership probability exceeds 50%, or any other threshold determined empirically in
order to optimize the trade-off between precision and recall.
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In a nutshell, the function μclassif(.) depends on two types of parameters that we
will seek to learn by optimizing the prediction: the lexical embeddings of arbitrary
dimension p, x1, . . . , xW whereW is the size of the token vocabulary, on the one hand,
and the parameters that weight the features for classification β1, . . . , βK on the other
hand.

Once the input-output relationship is established, an appropriate loss function
needs to be chosen to guide the learning process. Suppose we have the true label
D ∈ {1, . . . ,K} and it is unique. For a standard classification problem, the natural
loss is the cross-entropy, which corresponds to the negative log-likelihood. Thus, for
an individual observation, i.e., for a character string s and a label D, or rather for a
pair (X,D) where X is the lexical embedding corresponding to s, the loss function to
minimize is given by:

log (
K
∑
k=1

exp (X′βk)) –
K
∑
k=1

1{D = k}X′βk.

Then, the tools seen in Chapter 2 can be used to train the network.

13.4.3 Other applications

In general, the applications of word embeddings derived from models such as
word2vec are too vast to be covered exhaustively. However, we can mention a
few potential applications:

– Concept detection via automatic lexical field search: when we want to detect
the mention of a concept in a document (e.g., inflation in a central banker’s
speech, computer skills in a CV), a simple way to proceed is to search for words
belonging to a pre-determined list. However, this technique suffers from low
recall because it can only detect documents mentioning exactly these terms. It
may be interesting to enrich this “source” list of words with words drawn from
their closest neighbors defined according to the word2vec embeddings and
a given distance. Thus, Gennaro and Ash (2021) use this technique to refine
the lists of terms that materialize the concepts of “emotion” and “rationality” in
political speeches.

– Document representation and clustering: a simple way to represent a docu-
ment is to take the average of the embeddings of the tokens that compose it. It
is then possible to look for “clusters” in order to group similar documents. For
example, Demszky et al. (2019) apply this approach to millions of tweets asso-
ciated with mass shootings in the United States to analyze how these events are
perceived by individuals based on their position on the political spectrum. This
strategy is an alternative to latent topic modeling, discussed in Section 12.4.

– More generally, these vector models outperform previous vector represen-
tations for most supervised tasks (e.g., named entity recognition, sentiment
analysis) and allow, for example, the
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which are coherent interpretations of series of events or facts, by revealing a
logical structure between each element that composes them (e.g., Ash et al.,
2021).

13.5 Going further: representationof unstructureddata

The fundamental idea behind embeddings is to assume that an object can be repre-
sented by its context (i.e., a set of other objects observed at the same time and related
to the target object). This involves modeling an observation conditionally on neigh-
boring observations by vectors in a space, where mathematical operations encode
proximity relationships. This concept is applied not only in natural language pro-
cessing but also in processing unstructured data like images. This section explores
the potential applications of embeddings in empirical economics through examples.
Rudolph et al. (2016) develop a general approach to define embeddings for a wide
variety of types of data.

13.5.1 Encoding textual or visual information

Traditionally, when studying consumer behavior, economists only had access to tab-
ular data about a product, such as its price, brand, color, dimensions, and a few
other relevant characteristics. Such data is sufficient to capture differences between
fairly homogeneous products, such as tulips or laundry detergent. However, a num-
ber of characteristics of consumer goods are not objectively measurable, such as
the design or the quality of finishes, making these structured data insufficient to
fully characterize certain heterogeneous products like automobiles, handbags, or
watches. However, these characteristics are relevant to consumer preferences and
the cost function of the producing firm, and thus necessary for studying demand.
Traditionally, instrumental variable strategies were implemented. For instance, the
model proposed by Berry et al. (1995) cleverly uses the unobserved random vari-
able ζj that is correlated with price to capture unobservable factors of the product in
Equation (6.13).

Nevertheless, modern techniques in language processing and computer vision
make it possible to capture more of this information that is observable to the con-
sumer but not easily to the economist. Thus, Bajari et al. (2021) use both a language
model and a vision model to encode certain unstructured data from the product’s
presentation onAmazon.com, such as the image, title, or product description. These
models are trained on classical tasks in computer-assisted vision (e.g., image cat-
egorization) and natural language processing (e.g., word prediction). Once these
models are trained, the penultimate layer of the neural network is isolated to allow
for the encoding of textual or visual information in a way that makes it usable in
standard econometric models. The authors choose to encode this information into
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a vector of dimension 5120. It is worth noting that this approach is similar to the
strategy implemented in siamese networks that will be discussed in Section 14.4.

13.5.2 Embeddings for consumer goods

In a very ingenious paper, Ruiz et al. (2020) apply the concept of embedding not
to texts or images as is typically done in machine learning, but directly to con-
sumer goods, by modeling consumers’ preferences for baskets of goods when they
go shopping at the supermarket. Here, the structure of the latent space reflects the
co-purchase relationships between goods and allows for the definition of economic
properties such as substitutability and complementarity. More directly, the authors
model, for a consumer, the conditional probability of buying item Wt+1, given that
they already have itemsW1, . . . ,Wt in their basket. In this definition, a dummy item
for the “checkout” is also used, which represents the end of the shopping session
and the checkout process, and is necessarily placed last in the basket of goods. In
this case, the parameter of interest is the moderate-dimensional embedding x that
represents an item available in the supermarket.

For a user represented by preferences θ, who already has the t goods represented
by embeddings x1, . . . , xt in their basket, the probability of them buying the t + 1-th
good is given by a soft-max function computed over all goods not yet added to the
basket:

P(Wt+1 = wt+1| {Wi = wi}i=1,. . . ,t) =
exp (θ′xt+1 + y′t+1 1

t ∑
t
i=1 xi)

∑c>t exp (θ′xc + y′c 1t ∑
t
i=1 xi)

,

with yt+1 an embedding defining the effect of interaction with items already pur-
chased, similar to the context vectors in the skip-gram (13.1) and CBOW (13.2)
models. The term θ′xc + y′c 1t ∑

t
i=1 xi can be interpreted as the utility of product c

given that products 1, . . . , t are in the consumer’s basket. This formulation is com-
patible with the framework of utility maximization, as the product that provides the
greatest utility is the one with the highest probability of being in the consumer’s
basket in the next step.

When the terms y′ixj and y′j xi are positive, it means that the presence of item i (e.g.,
slices of ham) in the basket increases the probability of item j (e.g., a baguette) being
purchased in the next step, and vice versa, indicating that they are complementary.
Hence a measure of complementarity between i and j is given by the formula:

y′ixj + y′j xi
2 .

Measuring the substitutability between two products is difficult because the large
number of available goods in a store means that most pairs of items are never
found together in a consumer’s basket. The authors therefore define the concept
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of exchangeability, which allows for measuring the degree of similarity in the inter-
action between two items and the rest of the products. They assume that when two
products are exchangeable without being complementary, they are substitutes (e.g.,
buying slices of ham, regardless of the brand, should have the same impact on the
probability of buying a baguette, but should not increase the probability of buying
slices of ham of another brand).

The model developed by Ruiz et al. (2020) is actually more complex and allows
for the fact that we do not observe the order in which goods are being placed in the
basket. The source code, directly optimized to run on a GPU, is available online at
github.com/franrruiz/shopper-src and includes some simulated data. Kumar et al.
(2020) propose a conceptually similar approach but using different tools. The main
point to remember is that embeddings can find relevant applications for exploring
typically economic questions.

13.6 Summary

Key concepts

Word embedding, one-hot representation, co-occurrence matrix, (truncated) singular value
decomposition (SVD), word2vec, skip-gram, continuous bag of words (CBOW), negative
sampling, embeddings for unstructured data.

Additional references

Chapter 6 of Jurafsky and Martin (2019) deals with word embeddings.

Codeanddata

Pre-trained word vectors are available online for GloVe (nlp.stanford.edu/projects/glove)
and fastText (fasttext.cc).

Questions

1. Compute the cosine similarity for two distinct words represented in one-hot
encoding.

http://github.com/franrruiz/shopper-src
http://nlp.stanford.edu/projects/glove
http://fasttext.cc
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2. Why is one-hot encoding not able to capture the semantic proximity between
words?

3. What is a word embedding? How can it be used in the context of text data
classification?

4. Propose a simple alternative to one-hot encoding to efficiently represent words.
5. What is a co-occurrence matrix and how can it be used to represent words?
6. How is the continuous bag-of-words (CBOW) languagemodel different from the

skip-grammodel?
7. What are the advantages and limitations of skip-gram and CBOW languagemodels?
8. For a properly trained word embedding model, in your opinion, what should be the

nearest neighbor to the resulting vector from the operation xcow – xfemale + xmale?
9. How can the use of subjective quality measures help model consumer demand?

Propose two possible approaches for modeling prices based on comments left on
products.

10. How could the bag-of-words approach bemarginally modified to take into account
the word order in a string? What is its limitation?



Chapter 14
Modern languagemodels

Modern language models are artificial intelligence systems designed to process tex-
tual data. For the purpose of this chapter, we will define them as pre-trained deep
neural networks thatmake use of special layers known as transformer blocks in order
to model the structure of the language. These models share two characteristics: they
are very large and they are trained on an enormous amount of data. Indeed, they
contain anywhere from a few tens of millions of parameters to a few hundreds of
billions for the larger ones (the so-called large language models, LLMs). Addition-
ally, they are typically trained on vast amounts of data collected from the internet
to perform a simple task such as predicting the next word in a sequence of text. This
simple task transfers very well to more specific NLP tasks. Contrary to what we
have seen in previous chapters, these models take the actual context of a sentence
into account, making them very flexible and powerful.

Thesemodels gained significant attention and traction after the famous “Attention
is all you need” paper by Vaswani et al. (2017). One of the most notable milestones
in the development of modern language models is the introduction of architectures
like the OpenAI’s Generative Pre-trained Transformer (GPT) series, starting with
GPT-1 (Radford et al., 2018) These models demonstrated unprecedented capabil-
ities in natural language understanding and generation by leveraging transformer
architectures and large-scale pre-training on massive text corpora.

The architecture of these models relies on and expands the concept of embed-
dings seen in Chapter 13. However, because these models stem from a computer
science literature that directly models the language in a realistic fashion, they are
general-purpose and rely less the tailor-made processing of text that we have seen
in Chapter 12 (e.g., lemmatization, stemming) although some form of text normal-
ization is always necessary. Instead, a first key ingredient is the tokenizer that cuts a
sequence of text into chunks that will be fed to the model. The difference with the
older NLP technology is that the way to cut the text sequences is learned directly
from the data.

This chapter studies the two components of any such language model: the tok-
enizer, which converts a string into a sequence of integers (Section 14.1) and the
neural network that processes such sequences (14.2). The third section discusses
how to train and use these models (14.3). Because it is the workhorse model for
many applications and larger models are mostly a scale-up from it, BERT (Devlin
et al., 2019) is presented in detail. Finally, Section 14.4 illustrates how these models
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can be leveraged to learn text embeddings with another self-supervised technique,
known as distance learning.

14.1 Tokenizers

A tokenizer is an algorithm that transforms a piece of text into a sequence of integers,
so it can be used as input in a language model, or more generally in any computer-
ized statistical model. In this context, encoding refers to the process of going from
text to integers, and decoding to the reverse process that goes from a sequence of
integers to the original text. This process can be seen as a special type of data com-
pression. As is the case for any such algorithm, it can be lossless when encoding and
then decoding a piece of text outputs the same exact piece of text, or lossy if this is
not the case.

Chapters 12 and 13 relied on defining tokens as words (i.e., strings separated
by white spaces), with three possible extra ingredients: (i) adding word n-grams,
(ii) adding character n-grams that span words, and (iii) pruning the vocabulary
by removing stop words, lemmatizing and stemming. This approach can be per-
fectly suited to certain NLP tasks, but is hand crafted and leaves room for better text
compression, as will be illustrated in this section.

14.1.1 Character-level tokenization

The priority when defining a tokenizer is to choose the level at which the tok-
enization operates. The simplest tokenizer one can think of is a character-level
tokenizer where each single character, including numbers, punctuation, and emo-
jis, is mapped to an arbitrary integer. A piece of text is then converted by looking
up the corresponding integer for each character. In Python, it can be easily coded
as building a dictionary and a function that will look up the characters:
1 # Get the list of all the unique characters appearing in
the training set.

2 # train_text is a string containing the corpus.
3 chars = sorted(list(set(train_text)))
4
5 # Define the encoder
6 ch2idx = {ch: i for i, ch in enumerate(chars)}
7 encode = lambda x: [ch2idx.get(i, 0) for i in x]
8
9 # Define the decoder
10 idx2ch = {i: ch for i, ch in enumerate(chars)}
11 decode = lambda x: ''.join([idx2ch[i] for i in x])

It’s good to define an out-of-vocabulary token that get assigned when the
algorithm stumble upon an unknown character – it is 0 in the above code. Notice
that this tokenizer will be lossy if the text used to define the mapping that goes from
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character to integer does not contain all the possible characters. The likeliness of
such a corner case depends on the application, but will happen in particular if the
test data is not properly cleaned to use the same characters as the train data.

The character-level tokenizer presents the advantage that the resulting vocabu-
lary will be very short. Moreover, if all possible characters are included, out-of-
vocabulary errors cannot occur, making tokenization lossless. The tokenizer can
adapt to never-seen-before words at test time. However, it does not compress the
text, as a string will have the same length whether it is tokenized or not. This results
in longer training and inference times, particularly affecting transformer models
(see Section 14.2 below), as longer input sequences increase the context size and
the number of operations required. Intuitively, this is because self-attention com-
plexity increases with the squared sequence length since a similarity measure has
to be computed for each possible couple of elements in the sequence, through the
inner product of some embeddings.

14.1.2 Word-level tokenization

At the other end of the spectrum, we can define tokens at the word level. It makes
sense from a human point of view: we assemble words to produce meaningful sen-
tences. For that, we could adapt the previous code and simply break the text onwhite
spaces. In Python:
1 # Get the list of all the unique words appearing in the

training set.
2 words = sorted(list(set(train_text.split())))
3
4 # Define the encoder
5 w2idx = {w: i for i, w in enumerate(words)}
6 encode = lambda x: [w2idx.get(i, 0) for i in x.split()]
7
8 # Define the decoder by analogy from previous code box,
9 # using 'words' instead of 'chars'.

However, it is wasteful to represent dog and dogs by two different tokens. It means
that the vocabulary would have to contain the plural form of every possible word.
Instead, a better encoding of dogs would leverage the token dog and the token -s to
signify a plural form. Similarly, it would make sense to have ice cream in addition to
ice and cream in the vocabulary, since this represents a frequently used concept. As
a consequence, one would like tokens to contain a combination of words, n-grams
of words, and n-grams of characters.

That being said, word-level tokenization can still be relevant depending on the
application and doesn’t have to rely on a simple rule like white-space splitting.
Indeed, a tokenizer can be defined ex-ante, using a known lexicon. For example,
Loughran and McDonald (2011) established a lexicon of positively and negatively
connoted words with the purpose of analyzing the sentiment of financial docu-
ments. In a very narrow sense, this lexicon
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It also risks missing important synonyms not included in the vocabulary. But it
may be enough if the application has a very specific set of words that capture the
object of study. These so-called vocabulary methods can either depend on a given
lexicon, or require to define an application-specific one, in a data-driven fashion.
Moreover, modern algorithms can still use simple rules like white-space splitting in
a preprocessing step called pre-tokenization.

14.1.3 Sub-word tokenization

Fortunately, modern tokenizers operate at the sub-word level and are trained rather
than defined ex-ante. During this training process, the vocabulary of tokens is cre-
ated. For sophisticated algorithms, automaticmerging rules are implemented, where
a longer tokenmight represent part of a sequence of text instead of using two shorter
tokens. This is particularly useful when the goal of the tokenizer is to efficiently
represent and process language data.

There are currently three popular algorithms for training a tokenizer: byte-pair
encoding (BPE), WordPiece, and Unigram. Their definitions and implementation
details can be found in the HuggingFace course online (HuggingFace, 2022).

To illustrate how they operate, let’s explain how the BPE algorithm works. First
proposed by Gage (1994), BPE has been modified by Sennrich et al. (2016) to oper-
ate at the character level. It requires the specification of a single hyperparameter:
the vocabulary size. The vocabulary is initialized by including all single characters.
Strings are represented by sequences of characters, exactly like in Section 14.1.1. At
this initial point, a token is exactly one character. Then, the most frequent pair of
tokens is merged into a new token that results from the concatenation of these two
tokens. The new token is added to the vocabulary. This step is iterated for as long as
the vocabulary contains fewer elements than specified beforehand. The algorithm
quickly merges common character sequences like t, h, and e to form the, aiming to
recover common words while avoiding their plural forms or typos. BPE tokeniza-
tion is used for example in roberta (Liu et al., 2019) and GPT-2 (Radford et al.,
2019).

TheWordPiece algorithm (Schuster and Nakajima, 2012; Song et al., 2021) oper-
ates similarly to BPE. However, it doesn’t merge pairs solely based on frequency;
instead, it considers the frequency of the pair divided by the product of the fre-
quencies of each pair constituent. WordPiece tokenization is used for the training of
BERT (Devlin et al., 2019).

The Unigram algorithm (Kudo, 2018) works in the opposite direction by start-
ing with a vocabulary containing all the possible sub-word units and iteratively
removing the token pairs that have the least probability of occurring in a Unigram
model. For more on the history of the concept of token, the reader is referred to
Mielke et al. (2021).
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14.1.4 Practical considerations when training a tokenizer

In modern tokenizers, since the vocabulary is defined in a completely data-driven
fashion, the key parameter to choose is its size. First of all, a multiple of 64 is advised
for optimizing training and inference performance. As stated by Andrej Karpathy
in a celebrated tweet regarding a simplified version of GPT: “The most dramatic
optimization to nanoGPT so far (≈25% speedup) is to simply increase vocab size from
50257 to 50304 (nearest multiple of 64). This calculates added useless dimensions but
goes down a different kernel path with much higher occupancy.”

As far as choosing the right multiple of 64, this is an empirical exercise: too
large and useless tokens will be added, too small and there are some opportuni-
ties for more efficient compression that is lost. Indeed, the trade-off here is always
between memory and compression, since a larger vocabulary will allow to com-
press the text more and to obtain shorter tokenized sequences, but at the price of
increasing the number of parameters in the language model and hence the memory
requirement when loading it. A good exercise is to look at the last added tokens
during the training process: if they look like very uncommon terms, compound
words, words with typos, plural forms etc. it might be a sign that the vocabulary
size is too large. Training a tokenizer is fairly quick, so one can proceed by trial and
error.

Besides this important parameter, training a custom tokenizer can reveal itself a
thorny endeavor. First of all: the role of spaces. Indeed, assuming we want to achieve
lossless compression, one has to decide how to encode spaces, and it would not
make sense to encode each space by itself since this would be by far the most fre-
quently used token is the text. Thiswill create two issues. First, the encoded sequence
will be approximately twice as long. Second, because language models ultimately
perform a complex classification task, encoding spaces as single tokens will create
a large imbalance in probabilities that will bias the language modeling problem:
assuming a word contains on average 1.5 tokens, if the classifier always guesses a
space, it will be correct roughly 40% of the times. In tokenizers like the one used
by GPT-2 (Radford et al., 2019), the choice is made to encode the word with its
preceding space if there is one. For words at the beginning of a sentence, there is
no space before, meaning some token can exist in two versions in the vocabulary:
with and without a preceding space. Then there are a few other choices that can
make a difference: should the tokenizer break down numbers to encode each digit
separately as is done forStarCoder (Li et al., 2023), a software development assis-
tant, and BloombergGPT (Wu et al., 2023), a large language model developed for
finance? Should some tokens like entities (e.g., companies, individual names) be
masked?

Finally, before tokenizing the text, a light cleaning step is highly recommended,
as we have mentioned in Section 12.2.1. This process takes the form of a pipeline
combining several steps such as removing extra white spaces, Unicode normaliza-
tion, lower casing, removing accents, etc.
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14.2 BuildingBERT

This section introduces the transformer architecture in a formal way, with the goal
of explaining the intuition behind it and underlining the important hyperparame-
ters. One of themost well-known variants of languagemodels using the transformer
architecture of Vaswani et al. (2017) is BERT (Devlin et al., 2019). Although it has
been surpassed by larger and better models, this is still a useful baseline to study
and consider in practice, especially since it is at a scale where one can train it from
scratch for under $100 (Izsak et al., 2021; Portes et al., 2023).

14.2.1 Context matters

The issue with embeddings produced by models such as word2vec (Section 13.3)
is that they do not change based on the context of a sentence. There is a simple
one-to-one mapping between a dictionary of tokens and a set of numerical vectors.
While this may be sufficient for many simple applications, language does not oper-
ate in such a straightforward manner. Words are polysemous, and their meaning
changes depending on the context. For example, the word mouse can either mean
a small animal that is covered in fur and has a long thin tail, or a small device that
is moved by hand across a surface to control the movement of the cursor on a com-
puter screen. Representing it with one single vector, devoid of any context, cannot
do it justice. Pronouns are place-holder words referring to different entities based
on the reality that the text is describing: he, she or it need to be defined within con-
text. For example, in the sentence “the cat ran after the mouse as it escaped,” it is
obvious that “it” refers to the mouse. Ideally, we would like to have a contextual rep-
resentation of “it” that is close to the representation of “mouse” since it designates
the same entity. This representation of “it” should also be different from the one in
this sentence: “the ECB is ready to do whatever it takes to preserve the euro. And
believe me, it will be enough.”

Fortunately, modern language models are very good at in-context representation,
thanks to the self-attention mechanism.

14.2.2 Self-attention

The idea of self-attention (Vaswani et al., 2017) is to build a contextual
representation of a token by computing a convex combination of its context, with
weights depending on howmuch tokens interact with each other. We will be careful
in keeping track of the dimensions of all the objects, as they are key to understand
how all the pieces work together.

Consider a sequence of T tokens: w1, . . . ,wT, each associated with their initial
embeddings of dimension h: x1, . . . , xT. We call “context” the whole sequence of
tokens. Starting from the output of the self-attention layer, we will transform xt into
an in-context representation for tokenwt which is
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embeddings of the other tokens:
T
∑
s=1

αt,svs,

where αt,s (the attention score) is a positive number that quantifies how much token
wt interacts with the token ws, and vs is a vector of dimension p that represents the
so-called value of token ws. Notice that unlike the word2vec model described in
the previous chapter, each element of the context is weighted by a coefficient vector
that depends on the element t – in the word2vec models, each element of the
context had the same weight. In other words, the attention given to each element of
the context is not constant. Now let’s see how these quantities are computed.

In the self-attention layer, each token wt is represented by three distinct embed-
dings of dimension p stemming from a linear transformation of the initial embed-
ding xt: the query, the key, and the value. The first embedding is called the query
and is defined as qt := MQxt for a p × h matrix MQ – it represents the token when it
is looking to interact with its context. The second embedding is called the key and
is defined as kt := Mkxt for a p × hmatrixMK – it represents the token as part of the
context. The inner product q′tks quantifies the strength of the interaction between
token t and token s, just as the numerator in the formula of the cosine similarity. The
higher the inner product, the more ws is a key element to define the representation
of wt. Because we want to normalize it to be between 0 and 1 so it defines a weight,
the so-called attention score makes use of a soft-max:

αt,s :=
exp (q′tks/√p)

∑T
i=1 exp (q′tki/√p)

, (14.1)

and it is easy to see that summing αt,s across the second index gives 1. Dividing by
√p prevents the value of the inner product from exploding when p is large. The
third embedding is called the value and is defined as vt := MVxt for a p × h matrix
MV – it represents the token value. As stated at the beginning of this section, the
self-attention value for element t is finally given by the convex combination of its
context values:

Self-Attention(qt,K,V) :=
T
∑
s=1

αt,svs =
T
∑
s=1

exp (q′tks/√p)
∑T

i=1 exp (q′tki/√p)
vs,

where the capital letter K and V denote the matrix of (row-wise) stacked keys and
values,K := (k′1, . . . , k′T)′ and V := (v′1, . . . , v′T)′. This layer reflects the context carried
by token t by extracting a signal computed from its interaction with the whole con-
text. This value, Self-Attention(qt,K,V), sometimes called attention head, defines a
contextualized embedding.

In practice, neural networks rarely use a single self-attention layer, but concatenate
multiple attention headswith their own parameters into a single vector of dimension
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p multiplied by the number of heads, further linearly transformed using a square
weight matrix and a constant vector. Going forward, we will call MultiHeadSelf-
Attention such layer. In general, h the dimension of the initial embedding vectors is
set to equate the size of the multi-head self-attention output, i.e., it is equal to the
number of heads times p. In the original base BERT model (Devlin et al., 2019),
there are 12 attention heads, p = 64 and h = 12 × 64 = 768.

Remark 14.1 Taking tokenposition into account

This presentation of the self-attention mechanism has been silent on the way to take the
token order within the sequence into account. In practice, this is done through positional
embeddings, where each token position 1, . . . ,T is associated to a particular embedding
p1, . . . , pT that depends only on the position. Then, initial token embeddings x1, . . . , xT and
positional embeddings are summed and used as inputs into the first self-attention layer.
Notice that the use of positional embeddings forces the model to set a maximum context
length Tmax, because at inference, processing sequences longer than Tmax would require
knowledge of positional embeddings for positions aboveTmax, which have not been learned
during training.

So far, we have not explained how the parameters governing the self-attention
mechanism are estimated – we will do so in Section 14.3. But we hope that when
trained properly they will yield a high attention score value αt,s between “mouse”
and “it” in the sentence “the cat ran after the mouse as it escaped.”

The attention score (14.1) defines a bidirectional attention, in the sense that a
given token representation can be defined by previous tokens, as much as next
tokens. This layer is used in encoders, neural networks that aim at representing
sequences of tokens without text generation in mind. It is possible to consider
instead a causal attention mechanism by masking the words coming later in the
sequence:

Causal Self-Attention(qt,K,V) :=
t–1
∑
s=1

exp (q′tks/√p)
∑t–1

i=1 exp (q′tki/√p)
vs.

This layer is used in decoders or generative language models, neural networks that
aim at representing sequences of tokens with the idea of predicting the next token.

14.2.3 Transformer layer

A transformer block defined in Vaswani et al. (2017) consists in the composition of
multiple steps around the self-attention layer, mainly as a way to facilitate training
and prevent the vanishing gradient problem.
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Let us first introduce the additional layers. The first layer is called layer nor-
malization (Ba et al., 2016) and ensures that outputs from intermediate layers are
properly scaled to zero mean and unit variance to avoid numerical issues during
training. For a given vector x of dimension h and trainable parameters β and γ, layer
normalization operates the following transformation:

LayerNorm(x) := β + γ
x – h–1∑h

j=1 xj

√h–1∑h
j=1(xj – h–1∑h

k=1 xk)2
.

When applied to a matrix, for example on the output of a self-attention layer for all
the tokens in a sequence (a matrix of dimension T × h), the LayerNorm operates
row-wise, normalizing the embedding of each token so its elements have zero mean
and unit variance when computed across each row.

The second additional layer is a simple feed-forward layerwith an activation func-
tion in the middle. This layer transforms an input vector x of dimension h, in the
following fashion:

FeedForward(x) := W2GeLU(W1x + b1) + b2,

where W1 is a ℓ × h matrix, b1 is a vector of dimension ℓ, W2 is a h × ℓ matrix, b2
is a vector of dimension h and GeLU(x) := xΦ(x) operating element-wise. ℓ is the
hidden dimension of this layer, usually set as multiple of h. ℓ := 4h in Vaswani et al.
(2017) or in Devlin et al. (2019). When applied to a matrix, it operates row-wise.

We have now all the elements to define a transformer block, starting from the
initial T × h embedding matrix X := (x′1, . . . , x′T)′ as input, where h is assumed to be
a multiple of the number of heads. Note that this process is iterative:

1. Compute the output of the MultiHeadSelf-Attention, by computing the
queries, keys and values corresponding to each head, from the embedding
matrix X.

2. Compute X̃ = LayerNorm(X + MultiHeadSelf-Attention(X)).
3. Compute Y = LayerNorm(X̃ + FeedFoward(X̃)).

The order and exact definition of each step within the transformer block have
changed slightly over the years. We presented here the original version, but a
more commonly used version is called the pre-normed version where the layer
normalization steps come before the self-attention and feed-forward layers.

This output matrix of dimension T × h, let’s call it Transformer(X), defines a con-
textualized embedding that can be used as input for anyNLP task. Indeed, at the end
of the computation, the embedding representing a particular token has been mixed
with all the other tokens in a non-linear fashion. The upside of thismachinery is that
the token representation now takes into consideration its context. The downside is
that this representation depends heavily on the sequence of which it is a part, so a
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given token is now uniquely mapped to a single embedding. This representation is
sometimes called hidden state in transformer models.

14.2.4 The anatomy of BERT

The original base BERT model uses embeddings of dimension h = 768 and stacks
12 transformer layers of 12 heads on top of each other for a total of 110 million
parameters, the output of the previous layer serving as the input of the next layer.
A larger model, known as BERT-large, stacks 24 such layers of 16 heads and
uses an embedding dimension of size 1024 for a total of 340 million parameters.
This set of layers constitutes what is referred to as the body of the model, which is
non-specific. Figure 14.1 represents a sentence as it is processed through the body
of BERT.

Then, a task-specific model head is added on top of it to perform the desired
predictive task. There are different possible model heads depending on the task at
hand. For example, if the goal is to perform a classification task with K classes, the
output of the last layer of the body will be transformed linearly using a matrix of
dimension K × h and then normalized using a soft-max to output a probability vec-
tor. Since the output of the body is a T × hmatrix, in practice people either take the
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Figure 14.1 The body of BERT.
Note: The embedding at the bottom left, corresponding to the final layer representation of the [CLS] token
is usually used as a feature summarizing the text sequence in subsequent tasks.
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embedding corresponding to the first token of the sequence, or average across all
the tokens of the sequence.

LLMs such as GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al., 2022),
GPT-4 (OpenAI, 2023), Llama2 (Touvron et al., 2023), Mistral (Jiang et al.,
2023), etc. all use an architecture that stacks transformer layers, with a few tricks
here and there. The only difference is a larger scale, going up to several hundred bil-
lion parameters. Training these models is made possible using vast amounts of data
and computer clusters gathering about 6–10 thousands of GPUs, for a total training
cost around a few millions dollars.

The literature using transformer-type architectures is often difficult to access for
novices and not so explicit about implementation details so that it is generally nec-
essary to read the source code to know exactly what is being done. Nevertheless,
Phuong and Hutter (2022) give the necessary details and provides clear pseudo-
code to reproduce this type of networks. We can also signal this great tutorial video
by Andrej Karpathy: www.youtube.com/watch?v=kCc8FmEb1nY.

14.3 TrainingBERT

Training a modern language model such as BERT from scratch requires a substan-
tial volume of data and computational resources, typically requiring at least 2 to 4
GPUs. Fortunately, pre-trainedmodels are accessible online, relieving the burden of
training, and enabling users to leverage their capabilities without incurring all the
associated costs, at the price of not controlling the data it has been trained on. The
following sections will delve into various training tasks and explore the scenarios in
which each task is applicable (Figure 14.2).

14.3.1 Pre-training

The first type of training is called pre-training and aims at training a model from
scratch (i.e., starting from randomly initialized parameters). The goal of this type of
training is for the model to acquire knowledge about the structure and semantics of
the human language that can then be specialized to a given task. Popular pre-trained
models available on the HuggingFace hub are trained in such a way.

Pre-training is done using Self-Supervised Learning (SSL, Balestriero et al., 2023)
tasks, see section 13.3 for a precise definition.

A first SSL task is calledmasked token prediction. In such a task, tokens from input
sequences are randomly masked using a specialmask token with a fixed probability
and the goal is to predict the original token using all the other tokens of the sequence.
Often, tokens are also swapped with any other token from the vocabulary at random
to add noise to the sequence and robustify training. Ultimately, this task is a simple

http://www.youtube.com/watch?v=kCc8FmEb1nY
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Figure 14.2 Types of training tasks for languagemodels

classification task over the whole vocabulary. In practice, a good masking probabil-
ity is about 15 %, but Portes et al. (2023) suggest that using 30 % makes training
converge faster.

A second SSL task is called next token prediction or text generation. The goal is
simply to predict the next token in a sequence using all the preceding tokens, using
a causal attention mechanism (see section 14.2). Models pre-trained on this task are
called decoder-only and are the basis for text generation models such as the GPT
family.

A third type of SSL task is called next sentence prediction and was used in the
original BERTmodel. In this task, for a given sentence either the following sentence
in the document (50% of the time) or a randomly sampled sentence (the other 50%
of the time) is added to form a pair. In the first case, the pair is labeled as “true” since
the two sentences follow each other, or “false” in the other case. Then the model is
trained to classify pairs of sentences as either following each other or not. For this
purpose, tokenizers add beginning-of-sequence (BOS) and end-of-sequence (EOS)
special tokens around the sentence with the idea that these tokens will capture its
general context. Specifically, Devlin et al. (2019) use the symbol [CLS] as the BOS
token, consider its embedding as the aggregate sequence representation and feed it
to the classification head to complete the task.

Pre-training amodel is costly and requires a large dataset. For example, BERT has
been trained on 3.3 billion tokens. Fortunately, a large literature has studied ways
to speed up model pre-training while keeping the costs under control by playing
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on model parameters and architecture, training tasks, training hyper-parameters
such as batch size or learning rate, float precision etc. Some improvements play only
on the computing side and leave the model and training tasks unchanged such as
using theDeepSpeed library (Rasley et al., 2020). However, leveragingmodel design
can significantly enhance both training and inference processes. Liu et al. (2019)
removed the next sentence prediction used by Devlin et al. (2019) to focus only
on masked token prediction, because it did not improve the performance of the
model. Izsak et al. (2021) studies the training of BERT with a computing budget
of 24 hours under different regimes of model size (larger is better), learning rate
(higher is better), batch size (larger is better), warm-up (shorter is better), etc. Portes
et al. (2023) propose a specific BERT model under the name MosaicBERT that
implements a few training tricks. Wettig et al. (2023) suggests that larger models
should use a higher masking probability of about 40 %. Another source of speed-up
is the size of the input sequences: since deep learning libraries operate on tensors, all
sequences within a batch have to be padded to the same length. Grouping sequences
by similar lengths to avoid unnecessary padding or reducing the context size of the
model can greatly improve training speed.

Pre-training a model is a good idea if your use case deals with data that are very
specific and unlikely to have been seen by models available online, for example, if
you are building a model in a specific language or on a proprietary dataset that is
very different from commonly available corpora. Be aware that your dataset should
be large enough to fuel themodel pre-training. Notice also that pre-training amodel
is absolutely necessary if you have trained a new tokenizer. Indeed, the vocabulary
has changed and words might not be tokenized in the same fashion as with a pre-
existing tokenizer. Another way to say it is that you cannot just train a tokenizer
and plug it into an existing neural network since the mapping from vocabulary to
integers has changed.

14.3.2 Fine-tuning

Fine-tuning a model is a form of transfer learning where the training starts from
parameters that have been optimized on another corpus. It can be done in twoways:
either continue pre-training it on a new corpus, or directly train it to complete a task
of particular interest.

Further pre-training on a different corpus
Extra pre-training on a different corpus happens exactly as pre-training from
scratch, but from a model that has already been pre-trained. The amount of train-
ing contained in the model checkpoint can be a considerable saving on training
time as the model no longer needs to start from randomly initialized weights. It
had presumably already encoded common statistical patterns that occur in written
language. For example, Dai et al. (2022) provide evidence that pre-trained BERT
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encodes syntactic dependencies. The downside of this approach is the need to reuse
the same tokenizer, which might not be adapted to the new corpus. For example, if
the tokenizer takes casing into accountwhile it should notmatter for the application,
it is important to question whether the model is appropriate or if the text should be
normalized.

Training on a downstream task
Training on a downstream task consists of taking a pre-trained model and adding
a task-specific head on top of it. The nature of the head will depend on the task:
for example, a classification task will use a linear layer and a soft-max to represent
a probability distribution over the outcome possible values. The established con-
vention consists of taking the hidden state of the [CLS] token from the last layer
of a popular pre-trained model to represent a sequence and feed it to the head of
the model as a feature for a prediction task. Nevertheless, some approaches take the
average of the hidden states of the tokens that make up the sequence, especially for
question answering tasks. Finally, some articles such as Rogers et al. (2021) suggest
that the middle layers of the model are more transferable, i.e., they have a better per-
formance on a new classification task, as they are less specific to the tasks that have
been used to pre-train large language models.

Notice that training on a downstream task can be quite fast if one decides to freeze
some layers of themodel. Typically in such exercises, only the last third of layers (the
ones closer to the prediction layer) and themodel head aremodified during training,
while the other layers are kept intact. This means the amount of computations is
greatly reduced.

14.3.3 Zero-shot learning

Languagemodels as feature encoders
Finally, a simple, computationally inexpensive alternative to neural network train-
ing, called zero-shot learning, is to use pre-trained embeddings as features in a simple
linear or logistic regression model. The idea is to process the textual inputs with the
language model to obtain the embeddings resulting from the [CLS] token of the
last layer and estimate a simple linear model based on them. Compared to the bag-
of-words approach for textual regression (Section 12.2.5), the dimension is often
reduced since the number of parameters to estimate goes from a few thousands (usu-
ally one perword) to a number equal to the size of the output embeddings of amodel.
Generally speaking, this strategymakes it possible to achieve decent results, without
paying the costs of training a model. This zero-shot learning approach can at least
provide an initial baseline estimate before developing more complex approaches.

To echoChapter 4, it is worth noting that the sparsity assumption on these embed-
dings is generally not verified, which prevents the use of techniques that rely on
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sparsity such as the Lasso. OpenAI points out on its blog that: “we observed that gen-
erally the embedding representation is very rich and information dense. For example,
reducing the dimensionality of the inputs using SVD or PCA, even by 10%, generally
results in worse downstream performance on specific tasks.” (platform.openai.com/
docs/guides/embeddings/use-cases)

Should you train your own languagemodel?
Since the publication of Vaswani et al. (2017), marking the beginning of the
intensive use of transformer-type architectures, progress in NLP has been dis-
armingly fast and made easily accessible to the public, notably via the Hugging-
Face hub. On the other hand, the cost of training models at the state of the
art is too high to be borne by a single individual. This begs the question: do
we necessarily have to re-train models? Can’t we just use them without specific
training?

It is a question whose precise answer obviously depends on the context, but we
can give some food for thought. First of all, if the data to be analyzed is very differ-
ent from those on which the available models were trained (e.g., different languages,
very specific lexical field), then it may be necessary to train your own model. Sec-
ond, for most standard tasks (e.g., sentiment analysis, translation, named-entities
recognition), efficient models already exist so it is often not necessary to re-train
models.

Finally, most state-of-the-art LLMs are simply too complex and costly to train.
Even the inference step can be costly to run on a personal computer, although
this state of affair is rapidly evolving thanks to libraries such as ollama.
Zhao et al. (2023) provide a detailed survey of these new models that have
quickly captured public attention, especially following the online release of
ChatGPT.

Table 14.1 summarizes this section.

Table 14.1 Comparison of training approaches

Approach Can use a new
tokenizer

Modifies model
weights

Domain-
specificity

Speed

pre-training
from scratch

yes yes highest slowest

further
pre-training

no yes high moderate

training on a
downstream task

no yes moderate moderate

zero-shot
learning

no no no fastest

http://platform.openai.com/docs/guides/embeddings/use-cases
http://platform.openai.com/docs/guides/embeddings/use-cases
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Remark 14.2 Using LLMsas assistants

With the release of ChatGPT, it has been increasingly common to interact with generative
models and LLMs in particular through so-called prompts, short textual instructions of the
task the model is to perform. Although they do not require any quantitative skill, crafting
a good prompt that will make the model perform the exact task the user has in mind is a
form of art and requires working by trial and error. This technology opens up new avenues
for research as it lowers the cost of access to artificial intelligence, which can be used to
perform standard tasks (e.g., sentiment analysis of documents, machine translation, entity
recognition) or more tailored tasks (e.g., document parsing, summarization). Depending of
thenumberofdocuments toprocess, usingaclosed-sourceAPI (e.g.,OpenAI) oropen-source
local models (e.g., through ollama) can be relatively cheap. However, inference time can be
prohibitive. Moreover, the inherent randomness in generative modelsʼ response creates dif-
ficulties for reproducible research. Generative AI and prompt-engineering are beyond the
scope of this textbook, but a good starting point is lilianweng.github.io/posts/2023-03-15-
prompt-engineering/.

14.4 Application:matching via Siameseneural networks

14.4.1 Description of the problem

The previous section was covering the training of languagemodels in generic terms.
This next section describes a specific example of a matching task that can be use-
ful for the empirical economist. Imagine two different text sequences describing the
same entity and one would like to design a system that is able to correctly match the
twopieces of text together. For example, onemaywant tomatch an individual’s state-
ments about their employer in the census to the description of that employer in the
SIRENE directory (the French national system for the identification and directory
of companies and their establishments), or similar products described in different
ways in two databases, one providing for example the daily quantities sold, the other
providing the characteristics of the product. Another application is to identify that
a newspaper article provides information about a specific company.

Howdoes this problemdiffer from a traditional classification task? First, the num-
ber of possiblematches is vast andnot limited to a reasonable number of alternatives.
On the contrary, millions of possibilities may exist. Additionally, these possibilities
appear and disappear over time. Take the example of associating an individual with
the establishment employing them on a given date: on one hand, the French eco-
nomic fabric consists of more than eight million businesses and, on the other hand,
it evolves at every point in time due to the creation and destruction of companies.

http://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
http://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
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It would therefore be futile to try to train an algorithm that outputs the identifier of
a company from a fixed collection of them, as it would quickly become obsolete.

The idea here is to adopt a flexible approach, allowing us to learn a relevant dis-
tance to match objects together. This is referred to as distance learning or metric
learning. These techniques have been successfully used in tasks such as facial recog-
nition (e.g., Schroff et al., 2015) and question answering.More generally, the strategy
we will describe can be applied to the representation of any set of objects containing
unstructured data (e.g., text, image) on which we measure a certain notion of simi-
larity (e.g., belonging to the same category or to the same basket of goods, describing
the same individual or company, associated as the result of a matching mechanism
such as the labor market).

14.4.2 General strategy

The idea is to estimate a functionm(., .) that gives a distance between two inputs in
such a way that this distance is small if the pair of inputs is indeed concordant, and it
is large if the pair of inputs is discordant. Let s1 and s2 be two inputs corresponding
to two strings whose compatibility we want to study. The idea is to learn a projection
function μproj intoRp and to define a distancemeasure d onRp, in order to compute:

m(s1, s2) = d(μproj(s1), μproj(s2)).

Once these elements are fixed, the closest item t among the collection of items
{t1, . . . , tn} to the item s is defined as:

t̂ = argmin
t∈{t1,. . . ,tn}

d(μproj(s), μproj(t)).

Since the function μproj is the same for both inputs and it is estimated by a neural
network, we refer to it as a Siamese network. Note that once this model is trained,
it may be interesting to store the representations t1, . . . , tn in a database in order to
avoid recalculating them on the fly each time a new query is submitted to the system.

Remark 14.3 Levenshtein distance

The idea of being able to evaluate the similarity between two strings is not new. One of the
standard distances defined directly on the space of strings, the edit distance, proposed by
Levenshtein (1966), counts the minimal number of basic operations (addition or deletion of
a character) necessary to go from one string to another. The lower this number – called the
edit distance or Levenshtein distance – the more similar the two strings are. A substitution
counts double since it consists of a deletion followed by an addition.
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For example, the Levenshtein distance between HOUSE and HOME is three, since starting
from thewordHOUSEweneed to delete the lettersU andS, and add the latterM to get to the
word HOME. Moreover, this is the shortest way to go from one to the other.

This distance can be interesting in certain contexts, however, it remains superficial in the
sense that it is not able to bring together two synonyms with distant spellings.

How do we choose the functions d and μproj? Regarding the distance d, a com-
mon choice is the cosine similarity, which measures a similarity coefficient between
two vectors. This measure takes its values between -1 and 1, with a value close to 1
indicating aligned vectors. Compared to the Euclidean norm, it tolerates differences
in magnitude but will consider “close” two vectors that have the same direction, see
Section 12.2.4 for a discussion. Translated in terms of distance, this measure gives:

d(x, y) = 1 – x′y
‖x‖2 ‖y‖2

. (14.2)

A good choice for μproj is a pre-trained neural network that uses the transform-
ers architecture such as BERT as we have seen in Section 14.2. Here, the idea if
simply to add a “model head” that averages the output embeddings of the body
across the sequence and produce a unique vector that takes real values in a space
of reasonable dimension. The question arises as to the dimension of this final repre-
sentation. Generally, a dimension lower than 30 is too low to capture the complexity
of the structure of the space. However, going too far (400 or more) can considerably
lengthen the training of the network and also not yield good performance because
the information is scattered. There is a middle ground to determine depending on
the application: the more heterogeneous the data, the more complexification of the
space is needed.

Only the function μproj depends on unknown parameters, so the focus of training
the model will be on learning a representation μproj(s) of an input s that will allow
bringing concordant pairs closer and separating discordant pairs. Notice that this
model can be fully trained from scratch, fine-tuned on this matching task, partially
trained (training only the layers close to the output), or implemented in a zero-shot
learning fashion as we have described in Section 14.3.

14.4.3 Loss functions

Now thatwe have described the general strategy, we need to implement it by defining
a loss function so that the model can learn from the data. Fortunately, the literature
has identified several loss functions that fit within this framework. Notice that the
choice of loss function also dictates how to structure the data for training themodel.

Let’s start with the simplest one, which is called the contrastive loss. To compute
it, we are given a triplet (s1, s2,D) with s1 and s2 two inputs, and D a binary variable
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that takes the value 1 if the inputs are concordant, and 0 if the inputs are discordant.
LetM be a positive real number called the margin. The contrastive loss is given by:

Dd(x1, x2)2 + (1 – D)max(0,M – d(x1, x2))2,

where xi := μproj(si), i = 1, 2. The intuition is as follows: for a pair of concordant
inputs (D = 1), we will modify the projection in the direction of minimizing the
distance between these inputs, while for a pair of discordant inputs (D = 0), we will
modify the projection in order to maximize the distance between the inputs, as long
as it is currently below the marginM. The existence of this margin prevents us from
excessively trying to separate representations that are already sufficiently distant. In
general, a value chosen for M is 1. Indeed, if we take the loss based on cosine simi-
larity (14.2), whose values range from 0 to 2, we can see that a loss of 1 corresponds
to a cosine similarity of 0, i.e., orthogonality between the two vectors. The idea in
this case is to seek to make the cosine similarity between the representations of two
discordant character strings less than or equal to zero, without aiming to minimize
it at all costs into negative values.

Note that the contrastive loss considers only two inputs, excluding all others. This
can lead to side effects, in the sense that modifying the projection of these inputs
to the target space can have unexpected consequences on the projection of other
inputs and result in an overall degradation of the model’s performance. To remedy
this problem, one possibility is to use the triplet margin loss, which takes as input a
triplet (sA, s+, s–) with sA being a given input (the anchor), s+ being a positive input
such that the pair (sA, s+) consists of concordant items, and s– being a negative input
such that the pair (sA, s–) consists of discordant items. The loss is defined as follows:

max(d(XA, x+) – d(xA, x–) +M, 0),

where xA := μproj(sA), x+ := μproj(s+), and x– := μproj(s–). In other words, this loss
seeks to impose the following inequality for each triplet of the described form:

d(xA, x+) +M ≤ d(xA, x–).

The distance from the anchor to the negative example must be greater than the dis-
tance from the anchor to the positive examplewith amargin of at leastM. For triplets
where the difference between the distance to the negative example and the distance
to the positive example is less than a threshold M > 0, we will seek to modify the
projection μproj in order to bring the representation of the anchor closer to that of
the positive example and move it away from that of the negative example.

Generalizations of these losses exist, such as the quadruplet margin loss (Chen
et al., 2017) or themulti-class N-pair loss (Sohn, 2016). Other strategies of this kind,
borrowing from the SSL approach, can be interesting (Balestriero et al., 2023).
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14.4.4 Model evaluation

The loss functions presented in the previous section are useful for training and
selectingmodels. However, they are too abstract and do not allow humans to simply
evaluate their quality. To address this, we propose two evaluation methods.

The first consists in calculating the top-k accuracy. For a given input, we look for
its k nearest neighbors and determine if a matching observation is among them. The
top-k accuracy is then given by the empirical probability of forming a matching pair
when associating the input with one of its k nearest neighbors. The drawback of
this strategy is that it is resource intensive, as each input must be passed through the
network to retrieve the vector representations, and then compute pairwise distances,
resulting in a complexity of(n2) for n inputs. Note that optimized algorithms exist
for calculating nearest neighbors when working with dense vectors (e.g., Matsui
et al., 2018).

To avoid this computational cost, another approach is to set up an exercise called
N-way one-shot learning. The idea is to provide an answer to the following question:
for a given input, among a collection ofN+1 other inputs, where only one is amatch,
in what proportion of cases can the model correctly reconstruct the pair?

In theN = 2 case, for a given input, themodel simply needs to choose the example
that matches among the two. Random chance gives a theoretical success proba-
bility of 50%. Therefore, we want a model that discriminates significantly better
than random chance among the presented examples. Logically, this score should
decrease with the number of incorrect inputs N, as it gives more opportunities for
themodel tomakemistakes. The theoretical success probability by randomly select-
ing an example is then 1/(N + 1). The idea is to randomly generate a large number
of exercises of this type and take the average result of each exercise to evaluate the
model’s ability to discriminate objects and reconstruct pairs.

In both cases (top-k accuracy and one-shot learning), the resulting measure is
directly interpretable by humans, as it gives the probability that the model correctly
discriminates.

14.4.5 Training tips

The following tools can serve as anchor points formaking progress specifically when
training such models:

– Transfer learning. When training neural networks, transfer learning is always
welcome as it allows to build on models that have been proved to work. In
this case, the sentence-transformers library in Python (Reimers and
Gurevych, 2019) offers the tools and pre-trained models to create embeddings
of sentences with the explicit purpose of performing semantic similarity tasks.

– Increase the number of negative examples. In general, transitioning to triplet
margin loss or quadruplet margin loss, compared to the standard contrastive
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loss, provides significant performance gains. The idea is as follows: the standard
contrastive loss aims to move a pair of inputs apart or closer together without
considering the rest of the inputs. By performing this operation, it is possible
that it inadvertently modifies the space and brings closer or moves apart two
items that should not be. Triplet or quadruplet losses limit this side effect. Some
articles even present 50 negative pairs per anchor. While not going that far,
using 10 examples can be advantageous. Similarly using large batches helps
avoid this side effect.

– Modify the computation of the “top k” by using new distances. Notice that
the concept of a “nearest neighbor” is not reciprocal: one vector can be the
nearest neighbor to another without the reverse being true. In practice, some
vectors may be found in the neighborhood of others with a very high probabil-
ity, while others may be completely isolated and therefore never considered. To
address this issue, Conneau et al. (2017) introduce the cross-domain similarity
local scaling, which penalizes “hubs” (concentrations of points) and allevi-
ates the penalty on “anti-hubs” (isolated points). The idea is to better separate
the regions where certain observations concentrate, while leaving the sparse
regions unchanged. This modification can be made even without retraining
the model, simply during the evaluation phase.

– Building a classifier to initialize the first layers. Training Siamese neural
networks is a self-supervised learning technique. Nevertheless, supervised
learning generally works better. The idea, then, is to initialize the first lay-
ers of the Siamese network by training a binary classifier on a concatenated
sequence [(sA, s+, 1), (sA, s–, 0), . . . ] with the same network architecture, adding
a layer that uses the final embeddings to extract a similarity probability – i.e.
exp(x′Ax+)/ (1 + exp(x′Ax+)). This system can be called the “slow system” since
if it were used to decide on a match, all candidate pairs would have to be pro-
cessed for each input. It could be used after a “fast system” (our method so far):
the latter obtains the top k nearest neighbors for a candidate item; they are then
presented to this classifier, and the accuracy of the “top k” is computed based
on the resulting score.

– Hard-mining. The technique of “hard-mining” or “try-hard loss” consists of
selecting particularly difficult negative examples to distinguish from positive
examples. The idea is to guide the learning of the network in order to better
discriminate ambiguous cases. This involves defining a specific way to load
the data in batches, which can be time consuming for training, but there are
solutions to optimize this step (see next point).

– Efficient search for similar vectors. The FAISS library (github.com/
facebookresearch/faiss) allows for optimized search for nearest neighbors
when dealing with high-dimensional vectors, which is useful for inference.
The basic idea of FAISS is to perform clustering of the vector space to opti-
mize the search: this reduces the complexity from (n) to (√n) since, for a
query, instead of evaluating the distance to each vector in the database, we first
evaluate the distance to the centroids of each

http://github.com/facebookresearch/faiss
http://github.com/facebookresearch/faiss
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each point in the nearest cluster. It can be shown that the number of clusters
that minimizes the average number of operations is K = √n. Several functions
are implemented on GPU, which is computationally advantageous.

14.5 Summary

Key concepts

Tokenizers, byte-pair encoding (BPE), self-attention mechanism, BERT, self-supervised
learning, pre-training, zero-shot learning, Siamese neural networks, distance learning, Lev-
enshtein distance, cosine similarity, contrastive loss, triplet margin loss, top-k accuracy,
one-shot learning, large languagemodels (LLMs).

Additional references

The self-attentionmechanismand,moregenerally, transformer layers aredescribed indetail
in Chapter 9 of Jurafsky and Martin (2019). An excellent tutorial for understanding trans-
formers in practice can be found on YouTube at youtube.com/watch?v=kCc8FmEb1nY. The
book Godbole et al. (2023) offers an in-depth discussion. In general, the online course “Full-
stack deep learning” (fullstackdeeplearning.com) is a comprehensive and highly practical
reference for implementing machine learning systems beyond textual applications.

Codeanddata

It is now easy to download pre-trained language models for various tasks such as named
entity recognition, text generation, sentiment analysis, topic classification, or automatic
translation, notably through the transformers package maintained by HuggingFace,
available at huggingface.co/transformers/. In this regard, Tunstall et al. (2022) is an excel-
lent practical guide that contains mainly code that can be easily modified. The associated
Python notebooks can be found here: github.com/nlp-with-transformers/notebooks.

Questions

1. Explain the self-attention mechanismwithout any equation.
2. What distinguishes data matching from a typical classification task? Describe a

method for implementing a matching system.
3. How is the contrastive loss used to model pairs of concordant and discordant inputs?

http://youtube.com/watch?v=kCc8FmEb1nY
http://fullstackdeeplearning.com
http://huggingface.co/transformers/
http://github.com/nlp-with-transformers/notebooks
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14.6 Appendix: Siamesenetworks beyond text data

To put distance learning into perspective, this appendix goes beyond textual data to
show how this self-supervised learning task can help build features from unstruc-
tured data.

14.6.1 Vector representation of job offers

Using the principle of Siamese networks, Schmitt et al. (2017) train a model to
project job offer descriptions into a 200-dimensional vector space, using data col-
lected from recruitment agencies on the internet. The strategy is identical to that of
Section 14.4, with a distance given by 1minus the cosine similarity, and a contrastive
loss function. The observed similarity between two offers is given by a binary vari-
able that equals 1 if at least one candidate clicked on both job offers, and 0 otherwise
(i.e., no candidate was interested in both offers at the same time).

This approach is astute because it allows the exploitation of job seekers’ revealed
preferences and their subjective evaluation of the similarity between two offers, in
order to construct embeddings that go beyond their textual content. Indeed, it is
possible that two offers require similar skills but are formulatedwith different vocab-
ulary (e.g., because they come from companies operating in different sectors), which
limits the scope of a purely textual analysis.

The authors note that the contrastive loss function used to train the model can
pose a problemby inadvertently creating transitivity: they observe that two job offers
will be close in the target space if they have been seen by job seekers who have also
viewed the same third offer, even though these two offers have never interested the
same job seeker. This flaw could be corrected by using a triplet margin loss.

14.6.2 Differentiation in the font market

Han et al. (2021) study the impact of the 2014 acquisition of FontFont by its com-
petitor Monotype on the diversity of products offered in the font market. Fonts are
purely visual products, so their characteristics are completely unstructured and diffi-
cult tomeasure, while consumers weigh aesthetic differences tomake their purchase
decision. To capture this, the authors use Siamese neural networks with a triplet
margin loss to encode the visual characteristics of fonts into dense vectors of dimen-
sion 128. The strategy used is exactly the one described in Section 14.4. Once the
model is trained, each font i is projected into this 128-dimensional space via the
representation xi. Two measures of font differentiation are used. The first measure
is the Euclidean distance to the mean:

‖xi – x̄‖2 ,
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with x̄ = ∑n
i=1 xi/n, measuring the average representation of the n fonts available on

the market. The second measure is defined as:

–∑
j≠i

1
‖xi – xj‖2

.

In both cases, these measures tend to have high values when font i is highly differen-
tiated from competing fonts. These two measures are then aggregated by date and
by firm, to compute an index of product diversity offered by each firm over time.
Finally, the authors use a strategy based on the construction of a synthetic control
to compare the impact of the merger (see Chapter 10). They show that the merger
has led to increased diversification in the font market.
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Chapter 15
Exercises

This chapter proposes exercises inspired from exams given at ENSAE Paris. Ele-
ments of correction are available in the associated GitHub repository, github.com/
jeremylhour/ml4econometrics.

15.1 Regression as aweighting estimator

This problem mainly relies on Chapters 3 and 10.
The aim of this exercise is to show that regression adjustment for estimating the

treatment effect is equivalent to using a weighted average of the control group’s
outcomes to construct the counterfactual. We observe an i.i.d. sample of the vec-
tor (Y obs

i ,Di,Xi) for i = 1, . . . , n. Y obs
i is the outcome variable whose value depends

on the treatment status of unit i. If unit i is treated (Di = 1), then Y obs
i = Y1i. If

unit i is not treated (Di = 0), then Y obs
i = Y0i. Xi is a vector of covariates of dimen-

sion p which includes an intercept. The index i is dropped when unnecessary. Let
π := P(D = 1). The quantity of interest is the average treatment effect on the treated
(ATT) defined by:

τATT = E [Y1 – Y0||D = 1] .

In many applications, the ATT is estimated by considering an estimator of the
following form:

τATT = E [Y obs||D = 1] – E [W0Y obs||D = 0] .

where W0 is a random variable depending on both X and D. Suppose the untreated
outcome follows a linear model: Y0 = X ′β0 + ε with (D,X) ⊥⊥ ε and Eε = 0. We
assume that E [(1 – D)XX ′] is non-singular.

TheOaxaca–Blinder procedure estimates the ATT in two steps. The first step con-
sists in estimating β0. The second step consists in estimating the ATT as a simple
average of the residuals computed on the treated group as ε̂i = Y obs

i – X ′
i β̂, for i such

that Di = 1.

Machine Learning for Econometrics. Christophe Gaillac and Jérémy L’Hour,
© Christophe Gaillac and Jérémy L’Hour (2025). DOI:

http://github.com/jeremylhour/ml4econometrics
http://github.com/jeremylhour/ml4econometrics
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1. Show that E [Y1 – Y0||D = 1] = E [Y obs||D = 1] – E [X||D = 1]′ β0.
2. Let β0 = argmin

β∈Rp
E [(1 – D)(Y obs – X ′β)2]. Express β0 as a function of certain

moments. What is its empirical counterpart? What regression would you use
to estimate β0?

3. Show that in this case W0 = E [X||D = 1]′ E [XX ′||D = 0]–1 X.
4. Show that this weight satisfies:

E[X||D = 1] = E[W0X||D = 0].

Interpret this condition.
5. Based on the previous questions, propose an estimator of the ATT of the form:

τ̂OB := 1
n1

∑
i:Di=1

Y obs
i – ∑

i:Di=0
ωiY obs

i .

Give the expression of the weights for this case. Do the weights ωi sum up
to one?

6. Compare with the synthetic control estimator.

15.2 Orthogonal score for treatment effect on treated

This problem mainly relies on Chapters 2, 3, 4, and 5.
Consider an i.i.d. sample of the random vectorWi = (Y obs

i ,Di,X ′
i )′ for i = 1, . . . , n.

Y obs
i is the outcome variable whose value depends on whether unit i was treated or

not. If unit i was treated (Di = 1), then Y obs
i = Y1i. If unit i was not treated (Di =

0), then Y obs
i = Y0i. Xi is a covariate vector of dimension pX > 1 which includes an

intercept. The index i is omitted when superfluous. The quantity of interest is the
average treatment effect on the treated, defined as follows:

τ0 = E [Y1 – Y0||D = 1] . (15.1)

Let π=P(D= 1) and the propensity score p(X) =P(D= 1||X). We make the follow-
ing two assumptions. The conditional independence assumption:

Y0 ⊥⊥ D||X, (15.2)

and the common support assumption:

0 < p(X) < 1. (15.3)



Exercises 303

1. (a) Let:

m(Wi, τ, p) = (Di –
p(Xi)

1 – p(Xi)
(1 – Di)) Y obs

i – Diτ.

Verify that E[m(Wi, p, τ0)] = 0.
(b) Suppose we have an estimation of the propensity score p̂. Propose an

estimator τ̂ for τ0.
2. (a) Suppose the propensity score is given by a Logit, i.e., p(X) =

[1 + exp(–X ′β0)]–1. The moment condition from question 1 is denoted by
m(Wi, τ, β) from now on. Compute E [∂βm(Wi, τ0, β0)].

(b) Consider the small dimension case where pX, the dimension of X, is small
and constant for any sample size. What is the most efficient method to
estimate β0? Give the formula of the corresponding estimator. Will the
resulting estimator of τ0, τ̂, be asymptotically normal?

(c) Let’s consider a high-dimensional case where β0 is estimated using:

min
β∈RpX

– [1n
n
∑
i=1

DiX ′
i β – log (1 + exp(X ′

i β))] + λ ‖β‖1 ,

where λ > 0 is a tuning parameter. What would you call such a method?
Will the estimator of τ0 be asymptotically normal in this case?

3. Suppose the outcome of no treatment is given by Y0 = X ′γ0 + ε with ε ⊥⊥ X
and Eε = 0.
(a) Show that E [DX(Y0 – X ′γ0)] = 0.
(b) Suggest an orthogonal moment condition ψ. Prove that it is orthogonal.

4. Based on the previous questions, provide an estimator τ̌ of τ0 that is asymp-
totically normal even in the high-dimensional case. What theorem are you
using?

15.3 Votingmodel

This problem mainly relies on Chapters 2, 6 and 8.
Consider the following utility model of an individual i in electoral district t who

chooses between two parties L and R:

UL,i,t = g(X′tβ0) + τ0Dt + ξL,t + εi,t,L, (15.4)

E [εi,t,L] = 0, ξL,t ⊥⊥ (Xt,Zt), and E [ξ2L,t|Xt] = σ2,

UR,i,t = 0. Xt ∈ RpX is a random vector measuring the characteristics of the party’s
candidate in district t,Dt is the amount of party’s advertising expenditure in district



304 Machine Learning for Econometrics

t, ξL,t is an unobserved shock specific to the district (e.g., candidate’s reputation), and
εi,t,L is an unobserved idiosyncratic shock distributed with cdf Fε(t) = [1 + e–t]–1. Xt
is considered exogenous whileDt is endogenous, and Zt is an instrumental variable.
g(·) is an infinitely differentiable function on R of the index X′tβ0.

For the first-stage equation, we assume:

Dt = f0(Xt,Zt) + ut, ut ⊥⊥ (Xt,Zt), (FS)

where f0 ∈ p,q and p,q is the class

{f : f(x, z) =
p

∑
i=1

γ0,i1{x ∈ Cai,r} +
q

∑
i=1

δ0,i1{z ∈ Cbi,r}, (ai, bi) ∈ RdX+dZ} ,

where Cai,r and Cbi,r are hypercubes of dimensionsRdX andRdZ , centered at {ai} and
{bi}, and with side lengths r.

We observe an i.i.d. sample of (Wt)nt=1 = (St,Xt,Dt,Zt)nt=1, among the n electoral
districts, where St ∈ (0, 1) is the (observed) proportion of votes in favor of candidate
L in district t.
A. Estimation of the first-stage equation

1. Suppose that p< n and q< n and that the true function f0 has only a few zero
coefficients {γ0,i}pi=1 and {δ0,i}qi=1 in its decomposition. Propose a consistent
and relevant estimator for the regression function E [D|X = x,Z = z]. Can it
be used when the assumption p< n and q< n is not satisfied? Explain.

2. Now suppose that p> n and q> n, and also the sparsity of the coefficients
{γ0,i}pi=1 and {δ0,i}qi=1 in the decomposition of f0. Give a consistent and rele-
vant estimator for the regression function E [D|X = x,Z = z], as well as the
estimation equation.

B. Estimation of τ0

3. Write down the estimating equation, starting from (15.4), and using the
dependent variable S̃t := ln(St/(1 – St)).

4. Find two functions Q1 and Q2 such that

m(Wt, η, τ0) = (S̃t – Q1 (η, Yt,Dt,Xt))Q2(η,Zt,Xt),

where η is a nuisance parameter to be defined, such that:

E [m(Wt, η, τ0)] = 0 (15.5)

E [∂ηm(Wt, η, τ)] = 0,∀τ ∈ Θ, (15.6)

where Θ is a compact neighborhood of τ0. Similar to the corresponding
chapter, we need to use (15.4), (FS), as well as an additional linear equation
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of your choice specifying the correlation structure between instruments and
regressors.

5. Give the conditions on the function g under which the estimator τ̂ defined by
(15.5) is asymptotically Gaussian, using only a theorem from the course.

15.4 Genderwagegap

This exercise primarily relies on knowledge from Chapters 2, 4, 5, and 8.
We are interested in measuring the wage gap between genders, defined as the

relative difference in earnings that appears between men and women when control-
ling for observable characteristics. Consider an i.i.d. sample of the random vector
(lnWi, Fi,Xi)i=1,. . .,n where lnWi is the natural logarithm of weekly wage, Fi is an indi-
cator variable equal to 1 if individual i is female and 0 otherwise, Xi is a vector of
observed characteristics of dimension p which can be (very) large.

1. Interpret the quantity

E[lnWi||Xi, Fi = 1] – E[lnWi||Xi, Fi = 0].

2. Consider the model:

lnWi = α + θFi + X ′
i β + εi, where E[εi||Xi, Fi] = 0 and ‖β‖0 ≤ s≪ p. (15.7)

(a) Given the problem at hand, what can be included in Xi?
(b) Provide a (simple) consistent estimator of θ in the case where p is a small

integer (e.g. p = 6), as n → ∞.
(c) Is it still a consistent estimator if p > n and/or p → ∞? Propose a consistent

estimator in the case you answered no to the previous question.
(d) Show that E[lnWi||Xi, Fi = 1] – E[lnWi||Xi, Fi = 0] = θ. Do you think this

is a reasonable assumption?
3. To further analyze the situation, consider the model

lnWi = α + θ(Zi)Fi + X ′
i β + εi (15.8)

whereE[εi||Xi, Fi] = 0, ‖β‖0 ≤ s≪ p, and θ(Zi) measures an effect that depends
on certain covariates Zi ⊂ Xi. Specifically, we assume that

θ(z) =
K
∑
k=1

θkzk.

(a) << The model (15.8) allows us to study a heterogeneous wage gap >>. What
can we think about this? Justify (a formula or two would be welcome).

(b) Rewrite the model (15.8) as a linear regression model. What are the
corresponding normal equations?
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(c) Assuming that p > n and p → ∞, but K and s are small integers, how could
you consistently estimate (θ1, . . . , θK)? Explicitly write an immunized
moment condition ψ for (θ1, . . . , θK) and add the necessary assumptions.

4. The table in Appendix A is extracted from Bach et al. (2018). It displays esti-
mates of (θ1, . . . , θK) based on the model (15.8) obtained from the method in
Question 3, using a sample of US college graduates. Interpret three rows of
your choice.

5. Based on this table, what do you think is the main problem for making
inference in this context?

6. Another way to model the heterogeneity of the wage gap is by using causal
random forests. In the following question, assume that (Xi)ni=1 are i.i.d. and
uniformly distributed Xi ~ U([0, 1]p). Then, at a certain point x in the support
of Xi, we define the causal random forest as follows

μ̂(x;X1, . . . , Xn) = ( n
s )

–1

∑
1≤i1<···<is≤n

T(x;Xi1 , . . . , Xis),

where

T(x;Xi1 , . . . , Xis) = ∑
i∈{i1,...,is}

αi(x) lnWi, αi(x) = 1{Xi ∈ L(x)}
s|L(x)| ,

L(x) are the leaves of tree T, |L(x)| is their Lebesgue measure, and s ∈ [n/2, n)
is the fixed size of the subsamples. Assuming that the regression function μ :
x → E [lnWi|Xi = x] is Lipschitz with constant C and that the construction of
the leaves L is independent of the sample (Xi)ni=1, prove the following inequality

|E [μ̂(x;X1, . . . , Xn)] – μ(x)| ≤ CDiam(L(x)), (15.9)

where Diam(L(x)) is the diameter of the leaf containing v.
7. Explain, based on (15.9), what high-level condition we can apply to

Diam(L(x)) to obtain consistency. Do standard random forests satisfy this
condition and why? How is this implemented in practice in the causal random
forest by Athey and Wager?

8. For any given ML proxy, we form five groupsGk, for k ∈ {1, . . . , 5}, among the
population based on the predicted outcome T(Xi), using splits Ik based on the
quantiles

Ik := [lk–1, lk], wherelk = F –1
T(Xi) (

k
5) ,

and F –1
T(Xi) is the quantile function of T(Xi). Using Figure 15.1 and Table 15.2,

provide your interpretation of wage gap heterogeneity and compare it with
the interpretation provided in Question 4 based on the tables in the appendix.
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Explicitly describe the differences regarding the nature of the parameter of
interest and their consequences in interpretation.

9. (Bonus) We want to take into account selection effects in labor market
participation. Explain how it can be modeled and provide a potential esti-
mation procedure if the selection equation depends on a set of unknown
high-dimensional variables, but is a priori sparse.

Heterogeneity of the genderwagegap, Appendix A,Q4–5

Table 15.1 Reproduction of Table 4 from Bach et al. (2018)

Variable Estimate p-value

Intercept −0.0463 0.9070
Marital status

Married, spouse present −0.1096 0.0000
Married, spouse absent −0.0737 0.0010
Separated −0.0575 0.0030
Divorced −0.0571 0.0000
Widowed −0.0536 0.0700

English language proficiency
Does not speak English 0.0550 0.1600
Yes, speaks very well 0.0111 0.9200
Yes, speaks well 0.0172 0.8850
Yes, but not well 0.0303 0.3400

Ethnicity and nationality
Black/African American 0.0789 0.0000
Chinese 0.0819 0.0100
Other Asian or Pacific Islander 0.0716 0.0000
Hispanic 0.0115 0.9200

Veteran status
Veteran 0.0429 0.0140

Industry
AGRI −0.0419 0.8540
MINING −0.0656 0.8540
CONSTR −0.0511 0.1330
MANUF −0.0283 0.4020
TRANS −0.0535 0.0030
RETAIL −0.0444 0.0150
FINANCE −0.0493 0.0180
BUISREPSERV −0.0433 0.0640
PERSON −0.0384 0.3860
ENTER −0.0281 0.9200
PROFE −0.0742 0.0000
ADMIN −0.0527 0.0140
MILIT 0.1145 0.2650
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Figure 15.1 Estimated GATES (sorted group average treatment effect).
Note: In black are the 90% robust confidence intervals for the two best MLmethods used, based on 100 splits.
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Table 15.2 Performancemeasures for GATES and best linear
predictor.

Elastic Net Boosting Nnet Random forest

Λ̂ 0.046 0.040 0.043 0.055
Λ̂ 0.120 0.104 0.108 0.109

Note: For the four ML methods used on log wages, based on 100 splits.

Table 15.3 Estimation of constant β1 and slope β2 of the best linear predictor.

Random forest Random forest Elastic net Elastic net

β1 β2 β1 β2
Log wage −0.207 0.810 −0.181 0.686
90 % CI (−0.234; −0.181) (0.609; 1.010) (−0.208; −0.155) (0.538; 0.838)

Note: For the two best methods based on 100 splits using the Λ-based selection procedure:
random forest and elastic net.

Heterogeneity of the genderwagegap, AppendixB,Q8–10

Let

Λ̂ = ||β̂2||
2
V̂ar (T(X))

and

Λ̂ =
K
∑
k=1

γ̂2kP (T(X) ∈ Ik) ,

where β̂2 is the estimator of the slope of the best linear predictor and γ̂k is the estima-
tor of the average treatment effect of sorted group averages (GATES). For any given
ML proxy, we form five groups Gk, for k ∈ {1, . . . , 5}, from the population based on
the predicted outcome T(Xi) using the splits Ik based on the quantiles Ik := [lk–1, lk]
where lk = F–1

T(Xi) (k/5), and F –1
T(Xi) is the quantile function of T(Xi).

15.5 Drought and incentives forwater conservation

This exercise primarily relies on knowledge covered in Chapters 4 and 8.
During a drought in the Southeastern United States in 2007, brochures encourag-

ing water conservation were randomly mailed to 35,000 out of the region’s 106,000



Table 15.4 Estimated average characteristics for the least andmost affectedE[Xk|G5] and .E[Xk|G1]

Random forest Elastic net
Least affected Most affected Difference Least affected Most affected Difference

Log wage
Age 31.47 34.36 −2.826 31.49 33.54 −2.044

(31.21; 31.73) (34.10; 34.62) (−3.196; −2.456) (31.22; 31.75) (33.27; 33.81) (−2.427; −1.660)
No. children < 19 0.263 0.831 −0.566 0.237 0.814 −0.586

(0.238; 0.287) (0.807; 0.856) (−0.602; −0.530) (0.212; 0.262) (0.790; 0.838) (−0.621; −0.551)
Experience 9.060 14.70 −5.634 9.238 14.06 −4.771

(8.793; 9.328) (14.43; 14.96) (−6.004; −5.258) (8.948; 9.528) (13.78; 14.34) (−5.185; −4.358)

Note: Based on 100 splits for the two variables age (Age), number of children under 19 (No. children < 19), and years of work experience (Experience) with 90% robust confidence intervals
for the ML methods used. “Least affected” corresponds to group G1 (“Most affected” corresponds to G5).
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households. The variable of interest is water consumption during the summer of
2007 (after the pro-social campaign), measured in thousands of gallons. The objec-
tive is to studywhether there is heterogeneity in the treatment effect, and if this effect
is more significant on households that (i) vote more often and (ii) are considered
Democrats or Republicans.
D is a dummy variable that takes the value 1 if the household received a

water conservation message and 0 otherwise. Recall that Y1 and Y0 represent
the two random variables representing potential water consumption between
June and September 2007 with and without treatment, respectively. Y = Y0 +
D(Y1 – Y0) represents the observed water consumption. X represents a set of
characteristics such as past water consumption, an indicator of voter registra-
tion, whether the property is rented or owned, the age and value of the prop-
erty, the age of the owner, etc. All variables are measured at the household
level.
p(X) denotes the probability of treatment, and we use the notation w(X) :=

1/(p(X)(1 – p(X))).
In order to estimate the relevant effects, we implement the generic machine learn-

ingmethodology. For all reported results, 30 different data divisions between amain
sample and an auxiliary sample are considered.

1. T(X) denotes the generic machine learning resulting from a given algorithm,
that is, the prediction of the conditional average treatment effect, τ(X), for a
household with characteristics X. Consider the following regression on the
main sample:

w(X)(D – p(X))Y = β1 + β2(T(X) – E [T(X)]) + ε. (15.10)

(a) In this regression, what does β1 represent?
(b) In this regression, what does β2 represent? Explain how it can help

address the question of heterogeneity of the treatment effect.
ForQuestions 2 to 5, your answers should be supported by statistics (p-values,

etc.) whenever possible.
2. We train four different algorithms: an elastic net, a gradient boosting

machine, a neural network, and a random forest. Table 15.5 presents the
statistics Λ = |||̂β2|||2V̂(T(X)), where β̂2 was estimated from the regression above,
for each algorithm.
(a) Explain how and why the statistic Λ can help choose the best out of the

four algorithms.
(b) According to Table 15.5, which algorithm is the best?
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3. Table 15.6 presents the results (estimator, 90% confidence interval, and
p-values) of the regression from Question 1 for the two best algorithms.
(a) Does the treatment have an effect?
(b) Is this effect heterogeneous?

4. For a given ML proxy and k = 1, . . . , 5, we define group

Gk = 1 {ℓk–1 ≤ T(X) < ℓk}

using quantiles –∞ = ℓ0 ≤ ℓ1 ≤ · · · ≤ ℓ5 = +∞ such that the popula-
tion is divided into five groups of 20% based on a ranking of households
using the ML predictor. If a household has G1 = 1, it is considered as
being among the “most affected.” If a household has G5 = 1, it is consid-
ered as being among the “least affected.” Table 15.7 reports the treatment
effect estimates for the least and most affected populations, as well as their
difference.
(a) Write down the regression equation that yielded these results. Explain

how it was estimated.
(b) Does the treatment have an effect on each household?
(c) Is there a difference in the treatment effect between the most and least

affected households?
5. We want to see if the most and least affected households have different char-

acteristics in order to answer the initial question. Table 15.8 reports the
result.
(a) How was this table obtained?
(b) Are households that participate more often in elections more likely to

respond to water-saving incentives?
(c) Are households that vote more often for Democratic or Republican

candidates more likely to respond to water-saving incentives?
We now focus on estimating the conditional average treatment effect (CATE)

function:
τ(x) = E[Y1 – Y0|X = x] = μ1(x) – μ0(x),

where μj(x) = E[Yj|X = x], j = 0, 1.
6. Let’s assume the following model for j = 0, 1,

Yj = X ′αj + εj, E[εj|X] = 0,

where X has a large dimension (dimension p >> n, the number of observa-
tions). Give the formula for the Lasso estimators of α1 and α0. Propose an
estimator for the CATE based on these estimators. Justify intuitively why, in
practice, it does not have good properties.
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7. What is the “solution” that has been proposed to address this problem, when
p < n, in the causal random forest (CRF hereafter) estimator?

8. We consider the model of this randomized controlled trial (RCT), in which
treatment allocation is random, D ⊥⊥ X, and

Y = X ′γ + Dτ(X) + ε, ε ⊥⊥ (D,X), (15.11)

where τ(X) is assumed to be linear in X, which has a large dimension.We base
our estimator for τ on

(β̂, δ̂) (15.12)

= argmin
β,δ

{1n
n
∑
i=1
(Yi – X ′

i β – (Di – E [Di])X ′
i δ)

2 + λβ‖β‖1 + λδ‖δ‖1} .

Identify γ and τ in terms of β and δ and give the estimator of τ based on
(β̂, δ̂). Write down the moment estimation equations that we use in (15.12).

9. What is β called in (15.12)? In the context of a RCT, is the estimator based on
(15.12) immunized? Prove it.

10. Justify intuitively why such an estimator solves the problem mentioned in
Questions 6 and 7.

11. Give a context in which this CATE estimator is more appropriate than the
CRF estimator and another context in which the CRF is more suitable.

12. Returning to the application, one problem is that randomization was done at
the level of water meter routes and not at the household level. This could lead
to selection bias as households in the same neighborhood (sharing a water
meter route) may have similar water consumption behaviors and reactions
to the treatment.

We want to control for this using the following model

D = Z′γ + ζ, Z ⊥⊥ ζ, Z ⊥⊥ ε,

where Z are available auxiliary variables (e.g., median or mean income at the
neighborhood level, median or mean water consumption, occupancy rate of
owner-occupied houses, etc.) and ε is the residual in (15.11). Write down
how you would modify (15.12) to account for this so that your estimator is
immune. Show this last point.
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Drought andwater conservation incentives, appendix

Table 15.5 Ranking of algorithms – Λ.

Λ Elastic Gradient boosting Neural Random
Net Machine Network Forest

Water Cons.
(Q3 2007)

1.137 1.165 1.000 0.933

Table 15.6 Regression results.

Algorithm 1 Algorithm 2
β1 β2 β1 β2

Water Cons. −0.952 0.116 −0.902 0.058
(Q3 2017) (−1.278; −0.631) (0.068; 0.167) (−1.233; −0.576) (−0.031, 0.146)

[0.000] [0.000] [0.000] [0.441]

Table 15.7 Group treatment effect.

Algorithm 1 Algorithm 2
Less affected More affected Diff. Less affected More affected Diff.

Water Cons. −0.953 −1.688 0.700 −0.707 −1.483 0.780
(Q3 2007) (−1.685;

−0.217)
(−2.417;
−0.960)

(−0.302;
1.722)

(−1.459;
0.050)

(−2.235;
−0.730)

(−0.290;
1.858)

[0.023] [0.000] [0.342] [0.135] [0.000] [0.307]

Table 15.8 Average characteristics of groups.

Algorithm 1 Algorithm 2
Less affected More affected Diff. Less affected More affected Diff.

Frequency 0.098 0.120 −0.017 0.096 0.121 −0.024
of voting (0.096;

0.100)
(0.118;
0.122)

(−0.020;
−0.014)

(0.094;
0.098)

(0.119;
0.123)

(−0.027;
−0.021)

– – [0.000] – – [0.000]
Democrat 0.166 0.204 −0.044 0.147 0.242 −0.087

(0.159;
0.174)

(0.197;
0.212)

(−0.054;
−0.033)

(0.139;
0.154)

(0.234;
0.249)

(−0.097;
−0.077)

– – [0.000] – – [0.000]
Republican 0.408 0.448 −0.012 0.409 0.390 0.008

(0.399;
0.418)

(0.438;
0.458)

(−0.025;
0.001)

(0.400;
0.419)

(0.380;
0.399)

(−0.006;
0.021)

– – [0.159] – – [0.531]
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15.6 Synthetic control and regularization

This problem mainly relies on Chapters 2 and 10.
Consider a panel data framework where we observe an outcome Y obs

i,t for units
i = 1, . . . ,N + 1 measured at dates t = 1, . . . ,T + 1. The matrix (Y obs

i,t )i,t is the only
available data. Unit 1 is treated only at the last date T + 1, but never before, so we
observe the outcome without treatment as

Y obs
1,t = Y1,t(0)

for t = 1, . . . ,T, and only at the last date, the outcome with treatment,

Y obs
1,T+1 = Y1,T+1(1).

Units 1, . . . ,N + 1 are never treated at any date, so for them, we always have
Y obs
i,t = Yi,t(0), which is the outcome without treatment. In short, we have the

following missing variable model:

Y (0) :=
⎛
⎜
⎜
⎝

? Y2,T+1(0) ⋯ YN+1,T+1(0)
Y1,T(0) Y2,T(0) ⋯ YN+1,T(0)
⋮ ⋮ ⋮

Y1,1(0) Y2,1(0) ⋯ YN+1,1(0)

⎞
⎟
⎟
⎠

.

We are interested in estimating the treatment effect for the first unit at the last
date:

θ = Y1,T+1(1) – Y1,T+1(0).

This problem discusses different strategies to estimate Y1,T+1(0) (and thus θ) using
an estimator of the form:

Ŷ1,T+1(0) = μ +
N+1
∑
i=2

ωiY obs
i,T+1,

with the parameters μ and ω := (ω2, . . . ,ωN+1) estimated by solving the following
program:

argmin
μ,ω

T
∑
t=1
(Y obs

1,t – μ –
N+1
∑
i=2

ωiY obs
i,t )

2

. (15.13)

NB: No specific assumption is made regarding the dimensions N and T. These
dimensions are to be discussed during the problem.

1. How can we justify the use of Equation (15.13) to estimate the parameters?
2. (a) Compute the parameters that solve equation (15.13). Under what condi-

tion(s) do they exist?
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(b) Can we interpret the resulting value of ω? What does it represent?
(c) What problem(s) arise with the estimator of Y1,T+1(0)?

3. For this question only, we add constraints to Equation (15.13) specifying that
the elements of ω must all be constant and their sum must be equal to one.
(a) What is the value of ω under this constraint?
(b) Compute μ under this constraint.
(c) Compute and explain the intuition behind the resulting estimator for θ.

What is its name?
4. For this question only, we add three constraints to Equation (15.13): ωi ≥ 0

for i = 2, . . . ,N + 1,∑N+1
i=2 ωi = 1, and μ = 0.

(a) Name this estimator and the advantages it offers compared to the estima-
tor in Question 3.

(b) Is the solution to Equation (15.13) under these constraints generally
unique?

5. In Questions 3–4, we imposed several constraints on the parameters. Instead
of that, in this question, we consider a modified version of Equation (15.13):

argmin
μ,ω

T
∑
t=1
(Y obs

1,t – μ –
N+1
∑
i=2

ωiY obs
i,t )

2

+ λ ((1 – α) ‖ω‖22 + α ‖ω‖1) ,

where α ∈ [0, 1] and λ > 0 are hyperparameters.
(a) Explain how this modification allows overcoming the condition(s) found

in Question 2(a).
(b) Compute and describe the solution ω̂ when α = 0.
(c) Describe the solution ω̂ when α = 1.
(d) Propose a strategy for selecting the two hyperparameters α and λ.
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